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Abstract
Federated analytics is a way to answer queries over sensitive
data that is spread across multiple parties, without sharing
the data or collecting it in a single place. Prior work has de-
veloped solutions that can scale to large deployments with
millions of devices but, due to the distributed nature of feder-
ated analytics, these solutions can support only a limited class
of queries – typically various forms of numerical queries,
which can be answered with lightweight cryptographic primi-
tives. Supporting richer queries, such as categorical queries,
requires heavier cryptography, whose cost can quickly exceed
even the resources of a powerful data center.

In this paper, we present Arboretum, a new federated ana-
lytics system that can efficiently answer a broader range of
queries, including categorical queries, in deployments with
millions or even billions of participants. Arboretum achieves
this by 1) automatically optimizing query plans to find highly
efficient ways to answer each query, and by 2) including the
participant devices in the computation. Our evaluation shows
that Arboretum can match the cost of earlier systems that
have been hand-optimized for particular kinds of queries, and
that it can additionally support a range of new queries for
which no efficient solution exists today.
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ving protocols; Distributed systems security.
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1 Introduction
The age of “big data” has brought a wealth of massive data
sets that could be used to answer a wide spectrum of inter-
esting questions. For instance, a mobile-device manufacturer
might look for which apps cause a large battery drain [7], and
a medical researcher might look for combinations of drugs,
activities, and dietary choices that trigger rare side effects.
The necessary data is already available on many personal de-
vices, such as laptops and phones, so these questions could in
principle be answered today. In practice, however, this kind of
analysis would often raise serious privacy concerns: few users
would feel comfortable sharing data about their medications
or daily activities with a third party, even one they normally
trust.

Recent work on federated analytics [48] has developed a
safer way to perform this kind of analysis. This approach
relies on a combination of two key ideas. First, rather than
collecting the sensitive data in a central place, federated an-
alytics answers queries by running a distributed, encrypted
protocol between the participant devices; thus, the analyst
never gains access to the users’ raw data. And second, feder-
ated analytics typically provides a strong privacy guarantee,
such as differential privacy [30], which limits how much the
analyst could learn, in the worst case, about any individual
user’s data. A key challenge with this approach is scale: real
deployments can have millions or even billions of devices.
For instance, Apple currently has about 1.8 billion active
devices, and similar deployments exist at Google [8], Mi-
crosoft [27], and Snap [47]. However, some systems, such as
Honeycrisp [53] and Orchard [54], can work efficiently even
at this scale.

Nevertheless, existing systems for large-scale federated
analytics share an important limitation: they support only a
fairly small range of queries – typically numerical queries
that can be expressed in terms of counts and sums [54]. The
reason is that these queries can be answered using relatively
lightweight cryptographic primitives, so the computational
cost for the analyst remains relatively low. Differential privacy
itself could support a much wider range of queries, includ-
ing the categorical queries we have mentioned above, and
these queries can theoretically be answered with techniques
such as fully homomorphic encryption (FHE) or multiparty
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computation (MPC). However, at least with current technol-
ogy, the computational cost at scale would be astronomical,
and would far exceed even the resources of even a modern,
well-equipped data center.

In some cases, the cost can be reduced with a carefully
crafted protocol and/or with specialized cryptographic prim-
itives. For instance, Böhler et al. [14] uses this approach
successfully, and can answer categorical queries with roughly
a million participants. However, designing such a protocol
requires a lot of expertise, and the solutions tend to be highly
query-specific, so this approach does not scale well. Moreover,
even the carefully crafted solutions tend to be quite expen-
sive, which limits the scale that can be achieved in practice.
For instance, the million participants that Böhler’s protocol
reaches is still orders of magnitude smaller than some of the
deployments that exist today.

In this paper, we present Arboretum, a query planner for
federated analytics systems that can solve both of these prob-
lems. Arboretum is based on two key insights. The first is
that, while the massive number of user devices is certainly a
challenge because of the enormous amount of computation
power it requires, it is also an opportunity because the de-
vices can help with the computation. True, each individual
device (e.g., a cellular phone or a laptop) has very limited
resources, but, due to the sheer number of devices, even small
contributions from a subset of the devices can add up to an
enormous amount of computation power. For instance, a Dell
PowerEdge R7525 server has a multi-core Geekbench score
of 67,954, whereas a second-generation iPhone SE has only
3,027. However, a billion iPhones computing for one second
each can still outperform 10,000 servers computing for an
hour. Moreover, leveraging the user devices enables organic
scaling: adding devices increases both the demand for re-
sources and the supply. This approach has been used success-
fully, e.g., for CDNs [60] and decentralized systems [37, 51].
As we show here, it also holds promise for federated analytics.

Our second insight is that the design space has a fairly reg-
ular structure: queries contain high-level operators that can
be instantiated in different ways (for instance, sums can be
computed with sum trees of different fanouts, with a regular
for loop, etc.), and computations can be carried out by differ-
ent entities and/or with different cryptographic primitives. In
our experience, the main sources of complexity are the sheer
size of the design space, where even simple queries can be
executed in millions of different ways, and the complicated
dependencies. For instance, using a slightly slower imple-
mentation for one operator can massively speed up another,
and using a particular cryptographic primitive might speed up
additions but slow down comparisons, which can vastly in-
crease or decrease the overall speed, depending on what else
the query is doing. These dependencies are hard to track for a
human developer, but they are easy to explore mechanically,
using a type of query planner.

Arboretum accepts queries written in a simple high-level
language and then automatically finds a way to execute them
efficiently in a federated setting, spreading the computation
across servers and/or clients as necessary. The queries can
be formulated as if all the data existed in a central place,
without regard to distribution or confidentiality; Arboretum
automatically breaks the computation into smaller blocks,
assigns the blocks to suitable entities for computation (possi-
bly using homomorphic encryption or MPC), and chooses an
efficient cryptosystem. We have implemented a prototype of
Arboretum and applied it to ten differentially private queries,
including six new queries that cannot be executed efficiently
at scale by any current solution we are aware of. Our contri-
butions are:

• Arboretum’s query planner (Section 4);
• a generalized query runtime (Section 5);
• a prototype implementation (Section 6); and
• an experimental evaluation (Section 7).

2 Background
We begin by sketching three key technologies we use in Ar-
boretum: differential privacy, multi-party computation, and
homomorphic encryption.

2.1 Differential Privacy
To protect the participants’ sensitive data, our goal is to sup-
port differential privacy [30], the current gold-standard pri-
vacy definition, which has a rigorous mathematical foundation
and a rich literature of applications. Informally, we can imag-
ine a query as computing some randomized function 𝑓 over a
hypothetical database that contains a row of data for each user;
𝑓 is differentially private if changing any single row changes
the probability of any output, or set of outputs, by at most a
negligible amount. Formally, if 𝑑1 and 𝑑2 are two databases
that differ in a single row, we say that 𝑓 is (𝜀, 𝛿)-differentially
private iff, for any set of possible outputs 𝑆 ,

𝑃𝑟 [𝑓 (𝑑1) ∈ 𝑆] ≤ 𝑒𝜀 · 𝑃𝑟 [𝑓 (𝑑2) ∈ 𝑆] + 𝛿

Here, 𝜀 and 𝛿 are parameters that control the strength of the
privacy guarantee. A common recommendation is that 𝜀 < 1
(say, 𝜀 = 0.1) and that 𝛿 should be smaller than 1/𝑁 , where
𝑁 is the total size of the database.

Mechanisms: A variety of mechanisms for achieving diffe-
rential privacy have been proposed. For numerical queries, a
common choice is the Laplace mechanism [30], which works
by adding a bit of random noise to the result of the query.
Suppose the user is asking to compute a function 𝑓 , and sup-
pose 𝑓 has sensitivity 𝑠 – that is, changing any single row in
the database can change the value of 𝑓 by at most 𝑠. Then
𝑓 ′ := 𝑓 +𝐿𝑎𝑝 (𝑠/𝜀) is (𝜀, 0)-differentially private. For categori-
cal data, a common choice is the exponential mechanism [45].
Suppose each user’s data is from some discrete range 𝑅 (the
possible “categories” to which the user can belong), and we



FHE All-to-all MPC Böhler [14] Orchard [54] Arboretum
Aggregator computation O(N) → Years N/A N/A Hours Hours
Participant bandwidth (typical) MBs O(N) → PBs KBs MBs MBs
Participant bandwidth (worst-case) MBs O(N) → PBs O(N) → TBs GBs ∼1 GB
Numerical queries Yes Yes Yes Yes Yes
Categorical queries Yes Yes Yes Limited Yes
Participants can contribute No Yes 1 committee 1 committee Yes
Optimization No No No No Automatic

Table 1. Approaches for supporting queries with hundreds of millions of participants.

have a quality score 𝑞(𝑟, 𝑑) that defines, for each 𝑟 ∈ 𝑅, how
“useful” output 𝑟 would be if the database were𝑑 . If the quality
score 𝑞 is Δ-sensitive in its database argument, the exponen-
tial mechanism then outputs each possible 𝑟 ∈ 𝑅 with proba-
bility proportional to 𝑒𝜖𝑞 (𝑑,𝑟 )/(2Δ) ; this once again results in
(𝜀, 0)-differential privacy. An alternative but equivalent imple-
mentation is to compute 𝑞′(𝑑, 𝑟 ) := 𝑞(𝑑, 𝑟 ) +𝐺𝑢𝑚𝑏𝑒𝑙 (2Δ/𝜀)
and to then return 𝑓 ′(𝑑) := argmax𝑟 𝑞(𝑑, 𝑟 ) [31, §3.4]. When
releasing multiple outputs (e.g., the 𝑘 most frequent items),
one can either draw Gumbel noise 𝑘 times to maintain (𝜖, 0)-
differential privacy or simply add noise once and release the
outputs with the 𝑘 highest scores, which yields (

√
𝑘 · 𝜖, 0)-

differential privacy [29].

Sampling: Another useful primitive is secrecy of the sam-
ple [56]. Let 𝜎 (𝑑, 𝜙) be a function that selects each element
of some database 𝑑 with probability 𝜙 , and suppose we have a
query 𝑓 (𝑑) that is (𝜖, 0)-differentially private. Then 𝑓 (𝜎 (𝑑, 𝜙))
is (𝑙𝑛(1 + 𝜙 (𝑒𝜖 − 1)), 0)-differentially private, as long as no-
body can observe which elements have been selected. When
𝜖 ≤ 1 and 𝜙 is sufficiently small, this is close to ( 2𝜙

𝜖
, 0)-

differentially private.

2.2 MPC and AHE/FHE
Next, we briefly introduce two cryptographic primitives. The
first is homomorphic encryption. Its simplest form, additively
homomorphic encryption (AHE), is an encryption scheme
with one extra property: if 𝐸 (𝑎) and 𝐸 (𝑏) are two ciphertexts
that encode 𝑎 and 𝑏, respectively, there is an operation ⊞ such
that 𝐸 (𝑎) ⊞ 𝐸 (𝑏) = 𝐸 (𝑎 + 𝑏) – in other words, ⊞ can “add”
two ciphertexts such that the result is a new ciphertext that
encrypts the sum. More recently, fully homomorphic encryp-
tion (FHE) schemes have been introduced; these additionally
support an operator ⊠ such that 𝐸 (𝑎) ⊠ 𝐸 (𝑏) = 𝐸 (𝑎 · 𝑏). With
both additive and multiplicative homomorphisms, it is pos-
sible, at least in principle, to evaluate arbitrary functions on
ciphertexts. There are several different FHE schemes with
different tradeoffs: for instance, schemes like TFHE [24]
are often used to compute Boolean circuits over encrypted
bits, whereas others, such as BGV [18], are more commonly
used for numeric operations. The former is more efficient for
logical operations and comparisons, while the latter is more
efficient for additions and multiplications.

The second cryptographic primitive is multi-party compu-
tation (MPC) [58], which is a way for𝑚 ≥ 2 parties to jointly

evaluate a function 𝑓 on some secret inputs from each party
without revealing anything about the inputs, except what the
output of 𝑓 already implies. There are a variety of different
MPC frameworks that have been developed, but most relevant
for Arboretum is the honest majority setting.

3 Overview
In this paper, we focus on a scenario with a large number of
participants, a central aggregator, and at least one analyst.
Each participant owns a small device – say, a laptop or a
cellular phone – that contains some potentially sensitive data.
The analyst would like to answer some questions about the
combined data of all the users; the aggregator provides some
resources and also acts as a coordinator for the computation.
We have the following four goals:

• Accuracy: Queries should be answered correctly, and
as precisely as possible.

• Integrity: Malicious participants should not have a
disproportionate effect on accuracy.

• Privacy: Neither the aggregator nor other participants
should learn much about an individual participant.

• Efficiency: The cost of answering queries should be
reasonable, with up to a billion participants.

3.1 Threat model
Smaller-scale systems often assume that up to a third of the
nodes can be Byzantine [41], but, for systems with millions
of nodes, this seems overly pessimistic. Instead, we follow
earlier systems in this space [52, 54] and make the OB+MC
assumption [53], which consists two parts:

Occasionally Byzantine (OB): The aggregator is honest when
the system is first started but could occasionally be Byzan-
tine for short periods after that. We expect that an aggregator
with a million-user deployment would typically be a large
organization with a reputation to lose, so it would probably
not be structurally evil, although it could briefly “misbehave”
when it is hacked, or due to a malicious insider. Because of
this, the aggregator should not be fully trusted. If a Byzantine
period should occur, our only goal is to preserve the privacy
of the participants; we do not attempt to prevent a Byzantine
aggregator from damaging its own system.



Mostly Correct (MC): The participants are mostly correct,
except for a small fraction (say, 3–5%), which can be Byzan-
tine. Although a small fraction of participant devices could
always be hacked or controlled by malware, even a large
botnet with millions of devices would only represent a tiny
fraction of a billion-device deployment.

3.2 Strawman solutions
We begin by discussing a few strawman solutions for answer-
ing the query “Which zip code in the United States contains
the most participants?” with 108 participants. This query can
be answered with the exponential mechanism. For reference,
there are 41,683 zip codes in the United States. Table 1 shows
a side-by-side comparison.

FHE only: In principle, each participant could encrypt its
data with FHE and upload it to the aggregator, who could
evaluate the query on the ciphertexts, add the requisite amount
of noise, and decrypt only the final result. This is more or
less the classic setting for centralized differential privacy,
plus encryption. However, at the scale we consider here, this
approach requires a gigantic amount of computation, since the
quality score 𝑞(𝑑, 𝑟 ) would have to be evaluated separately for
each possible zip code. We estimate that, with 108 participants,
this would require a 40-trillion-gate circuit that, with current
technology, would take years to evaluate. In addition, the
aggregator would hold the private key and would thus have to
be trusted to decrypt only the final result and not the individual
uploads.

All-to-all MPC: The participants could also input their zip
code to a large MPC that evaluates the query and returns the
final result. This solves the privacy issue from above, but it
is even worse in terms of cost, since the per-participant band-
width scales at least linearly with the number of participants.
We are not aware of any practical MPC protocol that can scale
beyond a few hundred parties.

MPC committee: Böhler and Kerschbaum [14] delegates
the MPC to a small committee of participant devices. This
scales better – at least to a few million participants – but
the committee eventually does become a bottleneck: with
108 participants, even downloading the input data from each
participant would already generate gigabytes of traffic, and
evaluating a huge circuit in MPC would add hundreds of
gigabytes more.

HE + MPC committee: Orchard [54] avoids this bottleneck
by having the aggregator sum up the input data, using ho-
momorphic encryption, and by using the MPC committee
only for key generation, noising, and decryption. Orchard
does scale to 108 participants, but it supports mostly Laplace-
mechanism queries that can be expressed as sums plus some
postprocessing. The exponential mechanism is supported, but
only for tens of categories, which is nowhere near the number

Figure 1. Arboretum Overview

of possible zip codes. Anything larger would quickly exceed
the computation power of the adversary and/or of the (single)
committee of user devices.

3.3 Challenges
As the examples above show, one key problem is that the ex-
ponential mechanism tends to require far more computation
than the Laplace mechanism. Our zip code problem requires
evaluating the quality score 𝑞(𝑟, 𝑑) for each possible output 𝑟
– i.e. the 41,683 possible zip codes. This alone increases the
computation cost dramatically. In addition, the exponential
mechanism also requires more expensive kinds of computa-
tion: for instance, choosing the highest quality score requires
comparisons, which cannot be done in AHE alone and thus
requires FHE.

Of course, optimizations can often bring the cost back
down to a practical level – but there are lots of different op-
timizations that make sense in different parts of the design
space, and these optimizations interact in complicated ways
that are hard for a human developer to track. For a simple
query with two parameters and six metrics, the full possibility
space of feasible, let alone optimal, plans has eight dimen-
sions (see Section 4.2). It is difficult for a human developer to
pick the “correct” combination of optimizations for a particu-
lar scenario, and the cost of picking a suboptimal combination
can be substantial.

3.4 Approach
Our proposed solution, Arboretum, is based on two key obser-
vations. The first is that having a large number of participants
is both a challenge and a blessing: if each participant device
helps just a little bit with the computation, this creates a mas-
sive pool of additional resources that can be used to process
richer queries, even if they are beyond the reach of the ag-
gregator alone. As previous systems in other domains, such
as the NetSession CDN [60] or the PIER distributed query
engine [37], have shown, this approach can create “organic
scalability”: adding more participants increases the resource
demand, but also the resource supply, assuming that the users



can be incentivized to participate.1 As with the earlier sys-
tems, the key question is how to efficiently distribute the
work so that small devices, such as phones or laptops, can
make a meaningful contribution. Arboretum achieves this by
breaking query plans into small, bite-size pieces that are each
within the means of a small device.

The second key observation is that, although large and full
of complex dependencies, the design space is regular enough
to be explored mechanically: high-level operators can be in-
stantiated in different ways, the program can be segmented
and transformed differently, and there are various parameters
to be chosen. This is roughly analogous to query planning in a
traditional DBMS, although of course the operators and trans-
formations themselves are quite different. Thus, as we will
show, it is possible to build a “query planner” for federated
analytics that automatically finds a very good plan for most
queries, without manual optimization or expert knowledge on
the part of the analyst.

3.5 Roadmap
Figure 1 provides a high level overview of Arboretum. At a
high level, there are two phases: a planning phase (§4) and
an execution phase (§5). The planning phase begins when the
analyst submits a query written in a simple query language
(§4.1), along with a set of optimization goals, such as low
bandwidth, and a set of constraints (§4.2). Arboretum then
generates many possible query plans (§4.3), breaks them into
small “vignettes” that can be assigned to either the aggregator
or to small committees of user devices (§4.4), assigns suitable
cryptographic primitives (§4.5), and then picks the plan that
best achieves the chosen goal (§4.6). In the execution phase,
Arboretum uses sortition to pick a set of committees (§5.1),
including a special committee that generates a keypair and
publishes its public key (§5.2). The user devices then encrypt
their data with this key (§5.3), and Arboretum evaluates the
various vignettes using FHE and/or MPC (§5.4), and finally
decrypts the output of the last vignette (§5.5), which is the
answer to the query.

4 Query planning
In this section, we describe how queries are formulated in Ar-
boretum, and how Arboretum chooses a plan for each query.

4.1 Input language
Analysts formulate queries as if they ran on a single machine
that has access to the entire data set, without considering dis-
tributed execution or encryption. Arboretum uses a simple im-
perative language for this that is loosely based on Fuzzi [59],
although other languages could be used instead. Figure 2

1We do not focus on specific incentives here because this question is
not specific to Arboretum: it is common to all systems that rely on user
participation. Standard solutions should apply: if Arboretum is part of a
larger system that users enjoy, they could be asked to opt in; in a research
study, standard incentive methods (raffles, lotteries, ...) could be used; etc.

stmt := stmt; stmt | var = exp | exp | var[exp] = exp |
for var = exp to exp do stmt endfor |
if expr then stmt else stmt

exp := exp op exp | var | var[exp] | func(exp,...) | lit
op := + | - | * | / | && | || | < | <= | > | >= | ! | ==

Figure 2. Arboretum’s query language.

shows the syntax, which includes loops, conditionals, arrays,
and the standard arithmetic and logical operators. The partici-
pants’ input data is available as a predefined two-dimensional
array: db[i][j] contains the 𝑗 .th input from participant 𝑖.
The program’s output(s) are returned by calling the output
function.

Arboretum supports several built-in functions: simple ma-
thematical operations (exp, clip, etc.), aggregations over
arrays (sum, max), a uniform sampling function (sample-
Uniform), the Laplace mechanism (laplace), and the
exponential mechanism (em). As we will see in Section 4.3,
some of these functions can be instantiated in several differ-
ent ways. We use high-level operators in the input language
because it helps with certifying differential privacy, and also
because we do not expect the typical analyst to know, or care
about, low-level implementation details.

Figure 3 shows a simple example program (top1) that we
will use as a running example. Each participant 𝑖 belongs to
one of several categories (say, hair color) and sets db[i][k]
to 1 for the relevant category and to 0 otherwise. The program
sums up db to obtain a vector of quality scores, which are
simply the number of participants that belong to a given cate-
gory, and then invokes the exponential mechanism to select
a category, which it then returns. Notice that the program
is written as if db existed on a single machine, and that no
cryptography is being used. Distribution and encryption are
handled transparently by Arboretum.

4.2 Constraints and goals
Along with the program, the analyst specifies an optimization
goal and, optionally, a set of limits on the costs of solutions
they are willing to accept. Our prototype supports six metrics
that can be used to express these: two consider the aggregator
(computation time and bytes sent), and the remaining four
consider participant devices (expected and maximum com-
putation time, and expected and maximum bytes sent). For
participant devices, the expected and maximum values differ
because only a few devices are selected to serve on a commit-
tee, but these devices will have a higher cost. Other metrics,
such as energy, should not be difficult to add if desired.

Arboretum discards any query plans that exceed the speci-
fied limits, and, among the remaining plans, returns the “best”
one according to the chosen goal. For instance, an analyst
could specify that the aggregator must not spend more than
1,000 core-hours and that user devices must not be asked to



aggr = sum(db);
result = em(aggr);
output(result);

Figure 3. A simple example query (top1).

send more than 500 MB, and they could ask for the plan with
the lowest expected computation time on participant devices.

Once a query has been submitted, Arboretum attempts to
certify that the query is differentially private, and to determine
a sensitivity bound. Since this step is not the focus of our pa-
per, we simply adopt a method from prior work – specifically
the approach from Fuzzi [59], which our query language is
based on. Fuzzi handles both explicit and implicit flows, and it
can certify many kinds of queries automatically, without help
from the analyst. However, other approaches could be used
instead; for instance, CertiPriv [10] would enable analysts to
supply their own proofs of privacy, and thus allow Arboretum
to accept queries where automatic certification fails. If the
goal is to shield the analyst from additional details, such as
the choice of specific mechanisms for differential privacy, a
declarative input language could be used instead.

4.3 Program transformations
Once a query has been certified as differentially private, Ar-
boretum transforms it into a query plan it can actually execute.
This involves three steps: 1) replacing each abstract high-level
operation, such as sum or em, with a concrete implementa-
tion; 2) deciding whether each step of the query should be
performed by the aggregator, by a committee of devices, or
by the participant devices themselves; and 3) adding suitable
encryption to maintain confidentiality. Each of these steps
can be done in several different ways, so, by trying all combi-
nations, Arboretum can usually generate a large number of
candidate plans for a given query.

We begin by discussing the first step. Many of Arboretum’s
abstract operations can be implemented in several different
ways. One simple example is the sum operator that sums
up the contents of an array: when the sum is computed by
the aggregator, a simple for loop will do – but if the sum
is computed by committees, a sum tree is better, because
it can be spread across several committees. However, there
is no single “best” degree for this tree! On the one hand,
larger degrees will require fewer committees, so the cost of
starting a committee can be amortized better and the expected
cost is lower; on the other hand, lower degrees require each
committee to do less work and thus lead to a lower maximum
cost. A similar tradeoff exists with the max and argmax
operators.

A more complicated tradeoff exists for the exponential
mechanism. Figure 4 shows two possible instantiations of the
em operator. On the left is a straightforward implementation
of the textbook approach from [31, §3.4], which exponentiates
the scores s to form an array es, then draws a random value r
between 1 and sum(es), and then returns the first category

function em(s)
L=max(s)-11; // 16 bits
for i=0 to len(s)-1 do
if (s[i]>=L) then
es[i]=exp((s[i]-L)*𝜖
/(2*sens));
else
es[i]=0;

r=random(sum(es));
s[0]=0;
for i=0 to len(s)-1 do
s[i+1]=s[i]+es[i];
if (r>=s[i]&&r<s[i+1])
return declassify(i)

function em(s)
for i=0 to len(s)-1
ns[i]=s[i]+
Gumbel(2*sens/𝜖);

x = 0;
for i=1 to len(s)-1
if (ns[i]>ns[x])
then x = i;

return declassify(x)

Figure 4. Two instantiations of the em operator, based on exponenti-
ation (left) and on Gumbel noise (right), respectively.

i such that the sum of the preceding elements of es is at
most equal to r. Our only modification is that, since we have
to work with finite-precision numbers, we normalize es to
the range [1, 𝑒𝐿] and ignore any elements with smaller scores;
this results in (𝜖, 𝛿)-differential privacy (see [44, §A]). On the
right is a variant, based on [29], that adds Gumbel noise to
each score and then returns the element with the largest noised
score. The tradeoff between these variants is complicated and
depends on whether they are executed in FHE or using MPC.
Notice that both variants invoke a declassify function to
indicate that their result is safe to release in unencrypted form
(see Section 4.5).

4.4 Basic type inference; Vignettes
Once all high-level operators have been instantiated, Arbore-
tum performs type inference to assign to each variable and
each expression 1) a basic type (int, fix, or bool), and
2) a value range. The latter is important for deciding the pa-
rameters of the cryptosystems to be used (e.g., the plaintext
modulus). The range bounds we infer are conservative; for
instance, the lower and upper bounds for a*b are simply the
products of the lower and upper bounds of a and b, respec-
tively. However, the analyst can, if necessary, use the clip
function to clip a variable to a smaller range.

Next, Arboretum decides which entity should execute each
of the steps of the resulting program: the aggregator, a com-
mittee of participant devices, or a specific participant device.
To this end, Arboretum breaks the program into short se-
quences of consecutive statements, which we call vignettes.
The program thus becomes a sequence of vignettes, each of
which is assigned to a particular entity. As a special case,
a vignette that consists entirely of a data-parallel for loop
can be parallelized, that is, its iterations can be assigned to
different entities. For instance, a vignette that uses commit-
tees to compute a level of a sum tree can be parallelized,
so that different committees compute the sum for different
vertexes, and a vignette that encrypts the initial input can be
parallelized so that each device encrypts its own data.

As a first approximation, Arboretum tries all possible com-
binations of vignette boundaries and locations. This seems



fine because we expect queries to be relatively short. How-
ever, we do implement a few simple heuristics to cut down
the search space. We use branch-and-bound, by scoring the
vignettes along the way (Section 4.6), and we discard partial
solutions as soon as they exceed one of the analyst’s limits or
become worse than the best known solution. We do not allow
constant assignments (such as x = 0) to run in a vignette
by themselves, and we do not allow consecutive vignettes to
run in the same location, since in that case they might as well
be merged. The only exception is if both run on committees,
which can make sense when there is a limit on the amount of
computation a committee member may do.

4.5 Encryption-type inference
At this point, the program represents a distributed computa-
tion that returns the correct result; however, it does not yet
ensure confidentiality, since the values are not yet encrypted.
Arboretum’s next step is to determine what needs to be en-
crypted, and how. This is done in three steps.

First, Arboretum identifies all values that need to be kept
confidential. This includes anything that a) is derived directly
or indirectly from the input database db, b) has not been
passed through the declassify function, and c) is used in
a vignette that runs on the aggregator or on individual partici-
pant devices. (Committees execute their vignettes using MPC,
which already ensures confidentiality.) The only exception is
that each participant device 𝑖 is allowed to see its own input
data db[i]. We use conservative taint tracking to find these
values, starting from db.

Next, Arboretum adds encryption and decryption state-
ments – initially without a specific cryptosystem. When a
confidential value 𝑣 is used in a participant or aggregator
vignette, Arboretum inserts, right after the statement that cre-
ates 𝑣 , a statement v’=enc(v) that creates an encrypted
clone 𝑣 ′. It then replaces any instances of 𝑏 in participant or
aggregator vignettes with 𝑣 ′. When an encrypted value 𝑣 ′ is
passed to a committee vignette, Arboretum adds a statement
v”=dec(v’) at the beginning of that vignette and replaces
any instances of 𝑣 ′ with 𝑣 ′′.

Third, Arboretum decides which cryptosystem to use for
each value. If an encrypted value is only used in additions, it
uses AHE, otherwise FHE. Whenever a cryptosystem is used
for the first time, Arboretum inserts a key generation vignette
at the beginning of the program and assigns it to a committee,
to prevent any single entity from obtaining the private key.

Figure 5 shows, as an example, one of the candidates that
are generated from the query in Figure 3 when there are 230
participants and 10 possible outputs. Here, the sum operator
has been instantiated with a simple AHE-based sum and
the em operator has been instantiated with a version that
uses Gumbel noise. Notice that the Gumbel noise for each
possible output is generated in a separate committee, and that
a vignette has been added at the beginning to generate the
AHE keypair.

vignette (committee)
ahePriv = aheKeygen();
ahePub = pubkey(ahePriv);

parallel vignette (participant i)
encdb[i] = aheEnc(db[i], ahePub);

vignette (aggregator)
s = 0;
for i=1 to 230 do

s = s + encdb[i];
parallel vignette (committee i)
ds[i] = aheDec(s, ahePriv)[i];

parallel vignette (committee i)
ns[i] = ds[i]+Gumbel(2*sens/𝜖);

vignette (committee)
x = 0;
for i=1 to 10 do

if (ns[i]>ns[x])
then x = i;

choice = declassify(x);
vignette (aggregator)
output(choice);

Figure 5. One of the candidate programs that are generated from the
query in Figure 3.

4.6 Scoring
At this point, the candidate is complete. Arboretum now es-
timates the cost of running the candidate, to see whether
it meets the analyst’s constraints (Section 4.2), and to see
whether it is better than the best known candidate so far. Scor-
ing is based on a simple cost model, which we have built by
benchmarking each building block – such as FHE operations,
MPC start-up cost, incremental MPC costs for computations,
etc. – on a reference platform. The model needs to be gener-
ated only once; after that, we can score a given query simply
by adding up all the costs for the operations it performs. If
necessary, the manual benchmarking step could be avoided
by using an automated cost modeling framework, such as
CostCO [33].

This approach obviously does not yield the exact costs of
running a query, for many reasons. For instance, the devices
that are used by the actual participants could be different from
our reference platform (or it could be a heterogeneous mix
of devices) and the building blocks we use, such as the MPC
frameworks, could apply their own internal optimizations
that could cause the total cost of a computation to differ
from the costs of the individual operations. However, recall
that we do not use scoring to predict the actual cost, but
rather to weed out expensive candidates. Even a rough cost
model should suffice for this purpose, although of course any
inaccuracies could cause the chosen candidate to be somewhat
more expensive than the ‘true’ optimal candidate.

5 Execution
Next, we show how Arboretum executes its chosen plan.

5.1 Setup
When query execution begins, Arboretum chooses the de-
vices that will serve on each committee. Arboretum leverages



MPCs for the honest-majority setting. Thus, the committee
members must be chosen uniformly at random to prevent an
adversary (either the aggregator or subset of the users) from
biasing membership towards their confederates.

We generalize the sortition mechanism from Honeycrisp [53,
§3.2] for this. The system starts with a random “block” of bits
𝐵0, which is chosen during a trusted setup phase (recall from
Section 3.1 that the aggregator is trusted at the beginning), as
well as a Merkle tree 𝑀0 that contains the registered devices.
When the 𝑖.th query is submitted, each device signs a message
(𝐵𝑖 , 𝑖, 0) using a deterministic signature scheme (such as RSA
with deterministic padding) and hashes the signature. The
𝑐 ·𝑚 devices with the lowest hashes then form the committees:
the device with the 𝑥 .th-lowest hash joins committee ⌊𝑥/𝑚⌋.
Thus, each device serves on at most one committee.

Notice that the minimum committee size 𝑚 depends on
the number of committees 𝑐: we need an honest majority in
all 𝑐 committees with high probability, even if some devices
go offline. Suppose we want to tolerate up to a fraction 𝑔

of the𝑚 members of each committee going offline, without
incurring any additional costs. Since the malicious members
could all conspire to remain online, we need to ensure that
there is still an honest majority among the remaining (1−𝑔) ·𝑚
members. So we choose 𝑚 to be the smallest number such
that 1 −

(∑
𝑖= ⌊0.. (1−𝑔) ·𝑚2 ⌋

(
𝑚
𝑖

)
𝑓 𝑖 (1 − 𝑓 )𝑚−𝑖

)𝑐
≤ 𝑝1, where 𝑝1 is

the desired upper bound on the probability of a privacy failure
in one round. (If the system is expected to run up to 𝑅 rounds
and the desired probability of ever experiencing a privacy
failure is 𝑝, we can choose 𝑝1 such that 𝑝 = 1 − (1 − 𝑝1)𝑅 .)
Since the number of committees can vary between query
plans, Arboretum calculates the minimum committee size for
a given query plan before scoring it, so it can estimate the
cost of the MPCs correctly. If more than 𝑔 ·𝑚 members of
some committee 𝑖 go offline at the same time, Arboretum can
reassign 𝑖’s tasks to committe 𝑖 + 1 mod 𝑐.

5.2 Key generation
The first committee serves as the key generation committee,
which is responsible for generating the public and private
AHE/FHE keys. This committee has two functions. First, it
uses the sensitivity bound from Section 4.2 to check whether
the balance in the analyst’s “privacy budget” is sufficient to
run the query. If it is not, the query fails. If it is, the commit-
tee jointly signs a query authorization certificate [53, §3.4],
which contains the public AHE and/or FHE keys, the query
sequence number, the query plan, the remaining budget bal-
ance for use by the next query’s key generation committee, a
fresh Merkle tree 𝑀𝑖 with the currently registered devices, and
a new block 𝐵𝑖+1 of random bits, which the committee jointly
generates in an MPC as ⊕𝑗𝑥 𝑗 , where the 𝑥 𝑗 are random bits
input by committee member 𝑗 . This certificate is sent to the
aggregator, which publishes it. (The inclusion of 𝑀𝑖 prevents

“computational grinding” attacks in which a Byzantine aggre-
gator, knowing the value of 𝐵𝑖+1, tries lots of new keypairs to
find ones that will be chosen for committees.)

The private key is securely transferred via secret shares to
the committee which will serve as the decryption committee
using a Verifiable Secret Redistribution (VSR) scheme [35],
similar to protocols such as Mycelium [52]. As long as both
the encryption and decryption committee have an honest ma-
jority, VSR ensures that the decryption committee can reliably
reconstruct the private key. Additionally, VSR prevents ma-
licious members of different committees from colluding to
recover the private key.

5.3 Input
Using the public key generated in the previous step, users en-
crypt their local data and send both their encrypted data and
a zero-knowledge proof (ZKP) validating correct formatting
to the aggregator. The ZKPs guarantee that malicious partic-
ipants cannot corrupt the results by submitting malformed
inputs – say, by pretending that their user is 1,000 years old,
or by submitting an input which is not an one-hot encoding
of the participant’s local value. The aggregator then verifies
the ZKPs uploaded by participants. Input data never leaves
any individual device unless it has been encrypted under an
HE scheme. Although malicious users can skew the results by
providing well-formed but incorrect inputs, the effect should
be roughly proportional to the fraction of users that are mali-
cious, which we have assumed to be small (Section 3.1).

To protect against a malicious aggregator, Arboretum also
requires the aggregator to build a Merkle hash tree (MHT)
with the results of the individual steps in the leaves (excluding
only the final output step). Each participant device then picks
some leaves at random and challenges the aggregator to return
a) the contents of this leaf, and b) an inclusion proof. The
devices then verify the steps they have audited. The number of
leaves each device audits is chosen such that the probability
of missing an incorrect step is smaller than some system
parameter 𝑝max.

5.4 Processing
Next, the query plan is executed step by step, one vignette
at a time. For vignettes involving individual users or the ag-
gregator, integrity is maintained using ZKPs for malicious
users and via MHT verification for a malicious aggregator,
similar to the previous step. For vignettes executed by individ-
ual users, the aggregator checks the ZKPs and ignores inputs
from devices that fail to provide a correct proof.

For vignettes involving MPCs, the committees are chosen
from the sortition phase discussed earlier. Assuming an hon-
est majority, the privacy of each individual MPC vignette is
protected by the security of the MPC protocol, and malicious
members in an honest-majority committee cannot reconstruct
the secret data. To guarantee privacy when data is sent be-
tween MPC vignettes, we generalize the idea from the key



generation step: the intermediate data generated at the end of
an MPC vignette is securely transferred via secret shares to
the next vignette involving an MPC using VSR [35]. Assum-
ing each committee has an honest majority, VSR guarantees
that an MPC can reliably reconstruct the secret data sent to
it from the previous MPC via secret shares while preventing
malicious members of different committees from colluding
to recover the data in the clear.

When MPC vignettes are completed, the aggregator serves
as a “mailbox” by accepting these outputs (secret shares) and
making them available to the next vignette. Outputs are signed
with the sender’s key and encrypted with the recipient’s key,
so the aggregator cannot view these messages’ contents. It
can corrupt or drop them, but it could only harm itself by
doing this (by causing the query to abort and not return any
results, which we assume the aggregator is interested in); it
would not impact privacy.

5.5 Output
The final vignette involves the output committee. This com-
mittee combines the secret shares of the individual members
to obtain the final result, which it then releases to the analyst.
Recall from Section 4.2 that the input program is certified as
differentially private; since the transformations preserve this
property (they do not affect what the query does, only how
it does it), this output is safe to release. We have included a
proof of correctness in [44, §B].

6 Implementation
For our experiments, we implemented a prototype of Arbore-
tum’s query planner in C++; this prototype has 11,787 lines
of code. We provide some key details below.

Cryptosystems: Our prototype uses the BGV cryptosystem [18]
for FHE. The specific parameters depend on the encryption
types the query planner infers (Section 4.5), but a typical
query with one-hot encoding uses a plaintext modulus to 230
(enough to sum binary values across one billion users), a
135-bit prime for the ciphertext modulus, and a polynomial
degree of 215. This results in over 256 bits of security [6].

MPCs, ZKPs, and VSR: For multi-party computation, we
use the MP-SPDZ framework [39] – specifically, the SPDZ-
wise Shamir program [23], where operations are performed
in a finite field with a configurable prime modulus. This is
a natural fit for BGV key generation and decryption, and it
provides security against malicious parties as long as there
is an honest majority. The SPDZ protocol is UC-secure [26],
so, since Arboretum is using it in a black-box way, our MPCs
remain secure under general composition [40]. For efficiency,
the encryption, decryption, and key generation MPCs set the
prime modulus to BGV’s ciphertext modulus. For the zero-
knowledge proofs, we use the ZoKrates toolbox [2], with
the bellman [1] backend and the G16 scheme [36]. Since

ZoKrates requires a trusted setup, we use the first commit-
tee to perform the necessary trusted setup (the same is done
in Mycelium [52]). We use signed proofs to prevent replay
proofs due to G16’s malleability. For Verifiable Secret Redis-
tribution, we obtained the source code from the authors of
Mycelium [52], which implemented Extended VSR [35].

Cost model: Our prototype includes a cost model that is
based on benchmarks of the various cryptographic primitives
on a Dell PowerEdge R430 server with two 2.4 GHz E5-2620
CPUs and 64 GB of RAM. This model cannot exactly predict
the costs of a query on a heterogeneous mix of devices, but it
should be sufficient for ordering the solutions. For primitives
with many settings, we benchmarked some representative set-
tings and interpolated the others. Our model does account for
some simple MPC optimizations, such as the fact that the first
comparison is more expensive than subsequent comparisons
because it requires the generation of multiplication triples.
We include validation data for our model in [44, §C].

Precision: In MP-SPDZ, we use the cfix and sfix fix-
point types for operations with non-integer values. We set
the fixpoint length to be 30 bits for the integer part and 16
bits of precision for the decimal part, which gives 40 bits of
statistical security in the MPC programs. The use of fixpoint
types avoids some of the complications with implementing
differential privacy, such as irregularities due to floating-point
implementations [46]; we additionally use base-2 for the ex-
ponential mechanism, as suggested by Ilvento [38], which
also has better support in MP-SPDZ. As with most other im-
plementations, the use of finite-range data types adds a small
𝛿 to the guarantee, since the tails of the Laplace and Gumbel
distributions are cut to the representable value range.

Secrecy of the sample: We implement secrecy of the sample
(Section 2.1) as follows. Let 𝑥

𝑏
be a fractional approximation

of the sample size, where 𝑏 is the total number of bins in
a standard ciphertext – for instance, setting 𝑥 = 𝑏/2 would
sample 50% of the participants. First, a committee samples
a value 𝑗 uniformly at random from 1 to 𝑏. Each participant
device also randomly chooses an index 𝑖 from 1 to 𝑏, and
places their encrypted local input only in that 𝑖-th bin, setting
all other bins to 0. They upload the result to the aggregator
as usual. To sample from the desired range, the committee
only decrypts bins from 𝑗 to 𝑗 + 𝑥 − 1 (modulo 𝑏) – they can
do this by summing over all bins in the aggregate ciphertext,
but replacing the bin values with 0 when they fall outside this
range. We discuss security of this protocol in [44, §D], but
in essence, participant devices do not know which random
value has been sampled by the committee (so they cannot
force themselves to be included or excluded, or even know
if they were sampled), and neither the committee nor the
aggregator knows which bins the participant devices selected,
so the secrecy of the sample is preserved.
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Figure 6. Expected bandwidth (a) and computation (b) required of each participant in a run of each algorithm.
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total participants which serve on a committee of any type ranges from 0.00022% (k-medians) to 0.49% (topK).

7 Evaluation
Arboretum extends the range of queries that can be answered
at scale, but it also generalizes some existing solutions. To
show this, we have chosen a mix of new and old queries for
our evaluation, which is shown in Table 2. The first six queries
are new: the first five use the exponential mechanism, and we
are not aware of any other system that can answer them effi-
ciently with billions of users and without a trusted aggregator.
The remaining queries are adapted from earlier work: cms
is the query from Honeycrisp [53], bayes and k-medians
are two queries from Orchard [54], and median is the query
from Böhler et al. [14], which can be easily extended to sup-
port quantiles. Since Orchard’s query language is functional,
we rewrote these queries in Arboretum’s language; the other
two systems are for specific queries and do not have a query
language, so we implemented their queries in Arboretum.
Table 2 also shows the number of lines for each query, to
show that they can be formulated concisely in our language.
For categorical queries (the first five in Table 2), we use a
one-hot encoding for the categories. Our implementation of
the median query also uses one-hot encoding and differs
from the one in [14] in a few other details; we provide more
information in [44, §E].

7.1 Experimental setup
We compare Arboretum to Orchard [54] and Honeycrisp [53].
We used the source code from [53, 54], and we closely fol-
low the methodology in these papers, by benchmarking the
individual building blocks and then extrapolating the overall
costs of deployments with millions of nodes. For benchmark-
ing, we used five PowerEdge R430 servers, each with twelve
cores (2xE5-2620 at 2.4 GHz), 64 GB of RAM, and Fedora
Server 34; to reduce interference, we pinned each participant
process to a separate core. To further simplify the comparison,
we used the same key parameters as [53, 54], unless stated
otherwise: 𝑁 = 109 participants, up to 𝑓 = 3% malicious
participants, and a 10−8 probability of privacy failure after
running 1,000 queries. With 𝑔 = 0.15 to tolerate a 15% churn,
this leads to committee sizes of about 40 members (depending

Query Action From Lines
top1 Most frequent item [31] 3
topK Top-K selection [29] 8
gap Exp. mechanism with gap [28] 8
auction Unbounded auction [45] 7
hypotest Hypothesis testing [20] 12
secrecy Secrecy of sample [9] 16
median Median [14] 39
cms Count-mean sketch [53] 5
bayes Naïve Bayes [54] 16
k-medians K-Medians [54] 30

Table 2. Supported queries.

on the number of committees), which is the setting Orchard
uses. We used C=1 categories for the hypotest and cms
queries, C=10 for the kmedian query, C=115 for the bayes
query (as in [54]), and C=215 for the other queries. For topK,
we used 𝑘 = 5 to return the five most common items. To
achieve a fair comparison to Orchard and Honeycrisp, which
use SCALE-MAMBA for MPC, we reimplemented the MPCs
for cms, bayes, and k-medians in the more efficient MP-
SPDZ framework.

We were not able to compare our median results to the
original algorithm from Böhler and Kerschbaum [14] because
the source code was not available and it was not clear from
the paper how to calculate the ranks. However, based on [14,
§E], a committee with 𝑚 = 10 members required 1.41 GB of
traffic for 𝑁 = 106 participants; if we assume at least linear
scaling in 𝑁 and𝑚,𝑚 = 40 and 𝑁 = 1.3 · 109 would require
more than 7.3 TB of traffic, which is beyond the means of a
typical participant.

7.2 Cost of running queries
We begin by examining the cost of running the queries in
Table 2. We allow participant devices to send up to 4 GB of
traffic and spend up to 20 minutes of computation time, and
we limit the aggregator’s computation to 1,000 core hours.

Figures 6(a) and 6(b) show the expected bandwidth and
computation required of each participant, respectively; there
is one bar for each query, which includes both the cost for
normal participant-side computations and the expected cost



 0

 250

 500

 750

 1000

 1250

 1500

top1 topK gap auction hypotest secrecy median cms cms
Honeycr.

bayes bayes
Orchard

k
medians

k
medians
Orchard

T
ra

ffi
c
 s

e
n
t 
(T

B
)

(a)

Forwarding

 0

 5

 10

 15

top1 topK gap auction hypotest secrecy median cms cms
Honeycr.

bayes bayes
Orchard

k
medians

k
medians
Orchard

C
o
m

p
u
ta

tio
n
 (

h
o
u
rs

)

(b)

Operations
Verification

Figure 8. Bandwidth (a) and computation (b) required of the aggregator. (b) assumes that the aggregator has 1,000 cores.

of serving on a committee (that is, the actual cost of each
committee type multiplied by the probability of being selected
for a committee of that type). As expected, the figures show
that the exponential mechanism has a much higher cost than
the Laplace mechanism; the cost is particularly high for the
topK query, which has to find the highest quality score 𝑘

times. Nevertheless, the expected costs are low in absolute
terms: each participant sends between 132 kB and 3 MB and
spends between 7.1 s and 62.4 s of computation time.

Of course, if a participant is actually selected to serve on
a committee, its costs are much higher than the expected
costs; the precise amount depends both on the query and
on the committee type. Figures 7(a) and 7(b) show these
costs, with separate bars for each committee type. The key-
generation committee is the most expensive; it consumes
roughly 700 MB of traffic and 14 minutes of computation
time. Although these costs are higher, they are still well within
the means of a typical device (especially if the computation
is done at night, while plugged in), and the odds of being
selected for a committee are very low: for instance, with 109
participants, the topK query has one 42-member committee
for key generation, 328 for decryption, and 115,334 for oper-
ations such as noising and computing the argmax. Thus, in a
given run of topK, only 0.49% of the participants are serving
on a committee of any type.

Figures 8(a) and 8(b) show the cost for the aggregator. Once
again there is a clear difference between the exponential and
Laplace mechanisms: the former involves more committees,
so more bandwidth is spent on forwarding. (hypotest is
an exception here because it has only a single category.) The
bandwidth costs are high in absolute terms, but, on average,
each of the 1 billion participants just receives about 1.1 MB,
which is the size of a small image file. The computation
time is below 10 hours when 1,000 cores (about 10 powerful
servers) are used; most of the tasks are trivially parallelizable,
so the time could be reduced by using more cores.

In the case of queries we took from Honeycrisp and Or-
chard, the figures also show the costs of the original system.
These costs are almost identical to Arboretum’s in expecta-
tion, however, the cost for committee members was much
higher because Orchard does not leverage multiple commit-
tees. Notice that the original systems were custom-designed
for these queries, whereas Arboretum was able to find these
query plans independently, without human intervention.
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Figure 9. Runtime of the query planner.

7.3 Cost of query planning
Before Arboretum can run a query, it first needs to choose a
good plan. As discussed in Section 4, this involves generating
and scoring many different candidate plans. To see how ex-
pensive this step is, we ran the query planner on a PowerEdge
R430 server for each of the queries from Table 2, and we
measured the runtime until a plan was chosen.

Figure 9 shows our results. The runtime varies widely,
from 10 ms (hypotest) to 212 s (median); this is because
the more complex queries have a larger design space, with
more possible combinations of operator expansions, more
ways to divide them into vignettes, and more combinations of
placement decisions. For instance, in the case of median, the
query planner considers 1,251,001 different plan prefixes and
16 full candidate plans before it makes a decision. Since the
queries themselves take hours to run (Section 7.2), it seems
fine to spend a few minutes on planning. Ultimately, the end-
to-end performance cost of Arboretum is dominated by the
cost of execution, as shown in Figures 6–8.

To test whether our branch-and-bound heuristics are ef-
fective, we also ran the query planner with these heuristics
disabled. This caused the planner to run out of memory for
half of the queries; in the cases where it did terminate, it took
between one and three orders of magnitude more time.

7.4 Effect on battery-powered devices
Although the probability of serving on a committee for any
given query is very low, Figure 7 shows that the costs can
be substantial if a device is selected. This is an important
concern, particularly for mobile devices, which have limited
battery capacity. To estimate the effect, we ran the most ex-
pensive MPC for each query with a party on a Raspberry Pi 4,
and we used a USB power meter (TOL-15571) to measure
the power consumption. The Raspberry Pi 4 is a reasonable
proxy for a mobile device: it has a 1.8GHz Cortex-A72 CPU,
which was used in mobile phones around 2015. To get only
the power used for the computation, we also measured, and
subtracted, the baseline power draw when the CPU was idle.
We measured the overall power draw of the MPCs, which
includes both computation and communication.
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Figure 10. Scalability of computation cost for the aggregator (a), and expected (b) and maximum (c) cost for participants.
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Figure 11. Power consumption on a Raspberry Pi 4.

Figure 11 shows our results; for comparison, we also show
5% of a current mobile-phone battery capacity (the 1,624 mAh
of a 2022 iPhone SE). The power consumption varies with the
query, but was below 5% for all of the queries we tried. Recall
that the chances of being selected for the worst-case MPC
are minuscule (on the order of 10−6). If a given device does
get selected, the power consumption is certainly nontrivial,
but should be manageable. The basic cost without committee
service, for the ZK proof and the encryption, was 6 mAh.

7.5 Effects of heterogeneity
Most of our experiments so far were run on server-class ma-
chines in a cluster, whereas a practical deployment would
contain a mix of different devices in a variety of geographic
locations. Our next set of experiments is meant to estimate
the effects of this heterogeneity.

Geo-distribution: If the devices are distributed over a large
geographic area, the propagation delays between the devices
would increase. This would primarily affect the MPC-based
vignettes, since they perform many communication rounds.
To estimate the effect, we ran one of our most complex MPCs
(Gumbel noise) with 42 parties across four servers, and we
used tc to change the latencies between the servers as if they
were located in Mumbai, New York, Paris, and Sydney. This
increased the MP-SPDZ time from 73.8s to 521.2s (+606%).
The exact effect on other queries would depend on the num-
ber and complexity of its MPC vignettes, as well as on the
distribution of the user devices.

Slower devices: If the devices contain mobile or embed-
ded devices, Arboretum’s computations would take more
time. For instance, an RSA-2048 signature takes 767𝜇s on
our servers, but 6 ms on a Raspberry Pi 4. Once again, the
compute-heavy MPCs are the most likely to be affected. We
ran the Gumbel-noise MPC twice, once with 42 servers and
once with 38 servers and 4 Raspberry Pi 4s; the computa-
tion time increased from 73.8s to 111.7s (+51%). The MPC
rounds are bottlenecked by the slowest device, so the exact
number of slow devices should not matter (much).

If we consider both effects, the turnaround times in a hetero-
geneous deployment would likely be about an order of mag-
nitude higher than the ones in Figure 6(b) and 7(b). However,
recall that Arboretum is not meant to be used for interactive
queries; for a medical study or a diagnostic query, an increase
from a few minutes to a few hours seems unproblematic.

7.6 Scalability
A final question is how well Arboretum scales to large num-
bers of participants, and whether the scaling behavior is qual-
itatively different from that of earlier systems. To examine
this, we used the top1 query as an example and generated
query plans for a wide range of system sizes, from 𝑁 = 217
to 𝑁 = 230 participants.

Figures 10(a-c) show our results: (a) shows the aggrega-
tor’s computation time, and (b) and (c) show the average
and maximum computation time for participants, respectively.
Each graph contains three lines: two with different limits
on the aggregator’s computation time, and one without any
limit. The overall pattern is similar to Orchard: the cost for
the aggregator increases with 𝑁 because it checks all the
ZKPs and, at least initially, also sums up the participants’ con-
tributions; the participants’ expected cost decreases with 𝑁

because the chance of serving on a committee decreases, but
the maximum cost is constant regardless of 𝑁 . However, if we
add limits, the picture changes: at some point, the aggregator
has to outsource some of the computation to the participants,
whose expected cost increases accordingly. (With the lowest
limit, the aggregator cannot even afford to check ZKPs after
𝑁 = 228, so the red line stops.) This option would not be
available in the earlier systems, which use a single committee.

8 Related Work

Federated Learning: Although Federated Learning is super-
ficially related to Federated Analytics, the former focuses on
machine learning instead of analytical queries and thus faces
very different challenges and tradeoffs. For instance, many of
the attacks on Federated Learning systems (see, e.g., [17]),
such as model poisoning or gradient leakage, do not have a
direct equivalent in the Federated Analytics setting. For an
overview of the latter, please see [16].

Local differential privacy: One way to achieve differential
privacy in a federated setting is to have each participant add
noise to its data locally, before sending it to the aggregator.



This is called local differential privacy (LDP) [32]. However,
LDP’s answers are very noisy [13], and they can be severely
distorted by small coalitions of malicious participants [21, 22].
Arboretum avoids these problems by adding noise only once,
using a committee. A separate concern is that, while LDP
works well with the Laplace mechanism, it is not a good fit
for the exponential mechanism because the quality scores
need to be computed without noising.

Secrecy of the Sample: Sampling from a large set of clients
in order to boost privacy is used in several differentially pri-
vate algorithms, most notably differentially private SGD [3].
However, previous implementations of this sampling [5, 47]
give guarantees in the local model. We are not aware of any
prior solutions for large-scale federated settings.

Different trust assumptions: A key difference between Ar-
boretum and some earlier systems is that Arboretum assumes
a single, untrusted aggregator. For instance, the shuffle model
(as, e.g., in PROCHLO [13]) requires two entities, the shuffler
and the analyzer, who must not collude; the anytrust model
(as, e.g., in UnLynx [34] and Prio [25]) requires a group of
entities that must contain at least one honest entity; and TEE-
based solutions, such as Glimmers [43], assume that certain
hardware features cannot be compromised. Adding trust as-
sumptions can reduce the cost of federated analytics, but it
also creates a risk of privacy failure in case the assumptions
do not hold.

Single-committee systems: Honeycrisp [53], Orchard [54],
and Mycelium [52] all share Arboretum’s approach of out-
sourcing certain computations to MPC committees. However,
all three systems are restricted to a single committee that per-
forms just a few simple steps (key generation, noising, and
decryption). When running the exponential mechanism with
more than a trivial number of possible outputs, this committee
quickly becomes a bottleneck. A fourth system, Böhler and
Kerschbaum [14], also uses a single committee to implement
the exponential mechanism but targets smaller deployments;
it was shown to scale up to one million participants.

Smaller-scale systems: Arboretum is designed for massive-
scale deployments with billions of participants, such as the
ones operated by Google and Apple. There is a rich litera-
ture of privacy-preserving analytics techniques for smaller
deployments, based on cryptographic techniques such as dis-
tributed key generation [55], pairwise blinding [4], all-to-all
MPC [19], homomorphic threshold encryption [49, 50], or
secret sharing [15]. However, these solutions typically do not
scale beyond a few thousand users, with the exception of
[12], which can support semi-honest secure aggregation on
the order of 109 devices using an invertible Bloom lookup
table to allow scalable message distribution between clients.

Query planning: Arboretum is not the first system to use
query planning to speed up privacy-preserving analytics. Con-
clave [57] and SMCQL [11] generate query plans that com-
bine local clear-text processing with small MPC steps; Se-
crecy [42] builds query plans for outsourcing relational queries
via MPC. However, these systems are all designed for a sce-
nario with a small number of participants that each hold a
large amount of data, which is the exact opposite of what we
focus on here. For example, Conclave and Secrecy are lim-
ited to at most three parties, and SMCQL supports only two.
Opaque [61] assumes that the private data is spread across
multiple servers, but that these servers belong to a single
organization and are part of a single cluster; Arboretum, in
contrast, assumes a federated setting in which each device is
owned by a different person.

9 Conclusion
Arboretum removes two key obstacles on the road to a broader
deployment of Federated Analytics at scale. So far, analysts
either had to have substantial cryptographic expertise, so they
could craft a specialized design for their queries that would
have an acceptable overhead, or they had to limit themselves
to the small set of queries that were supported by the existing
designs. Moreover, some queries were out of reach entirely
because no known design was efficient enough to be usable
by a typical aggregator. Arboretum helps in two ways: first, it
automates a large part of the design and optimization process,
and second, it adds a way for the participant devices to help
with the computation. Even if each individual device can only
help a little bit, the massive number of devices can neverthe-
less make a substantial contribution. As we have shown, this
enables entirely new queries, such as categorical queries with
a large number of categories, to be run at massive scales. So
far, such queries would have been run in the clear out of ne-
cessity, with all the privacy risks that this entails. Arboretum
provides a safer option with cryptographic protections and
the strong guarantees of differential privacy.

Acknowledgments
We thank our shepherd Raluca Ada Popa and the anonymous
reviewers for their thoughtful comments and suggestions.
This work was supported in part by NSF grants CNS-1955670,
CNS-1703936, and CNS-1750158.

References
[1] bellman. https://github.com/zkcrypto/bellman.
[2] ZoKrates. https://github.com/Zokrates/ZoKrates.
[3] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-

war, and L. Zhang. Deep learning with differential privacy. In Pro-
ceedings of the ACM Conference on Computer and Communications
Security (CCS), 2016.

[4] G. Ács and C. Castelluccia. I have a dream! (differentially private smart
metering). In Information Hiding, 2011.

[5] N. Agarwal, A. T. Suresh, F. X. X. Yu, S. Kumar, and B. McMahan.
cpsgd: Communication-efficient and differentially-private distributed

https://github.com/zkcrypto/bellman
https://github.com/Zokrates/ZoKrates


SGD. In Proceedings of the Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2018.

[6] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Homomor-
phic encryption security standard. https://eprint.iacr.org/2019/939.

[7] Apple. Differential privacy. https://images.apple.com/privacy/docs/
Differential_Privacy_Overview.pdf.

[8] E. Bagdasaryan, P. Kairouz, S. Mellem, A. Gascón, K. Bonawitz, D. Es-
trin, and M. Gruteser. Towards sparse federated analytics: Location
heatmaps under distributed differential privacy with secure aggregation.
arXiv preprint arXiv:2111.02356, 2021.

[9] B. Balle, G. Barthe, and M. Gaboardi. Privacy amplification by subsam-
pling: Tight analyses via couplings and divergences. In Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS),
2018.

[10] G. Barthe, B. Köpf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic
relational reasoning for differential privacy. In ACM Transactions on
Programming Languages and Systems (TOPLAS), 2013.

[11] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers. SM-
CQL: Secure querying for federated databases. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2017.

[12] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. In
Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2020.

[13] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. PROCHLO:
Strong privacy for analytics in the crowd. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2017.

[14] J. Böhler and F. Kerschbaum. Secure multi-party computation of
differentially private median. In Proceedings of the USENIX Security
Symposium, 2020.

[15] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth. Practical Secure Aggrega-
tion for Federated Learning on User-Held Data. arXiv:1611.04482 [cs,
stat], 2016.

[16] K. Bonawitz, P. Kairouz, B. McMahan, and D. Ramage. Federated learn-
ing and privacy: Building privacy-preserving systems for machine learn-
ing and data science on decentralized data. ACM Queue, 19(5):87–114,
Nov. 2021.

[17] N. Bouacida and P. Mohapatra. Vulnerabilities in federated learning.
IEEE Access, 9:63229–63249, 2021.

[18] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. Cryptology ePrint Archive, Report
2011/277, 2011. https://eprint.iacr.org/2011/277.

[19] M. Burkhart, M. Strasser, D. Many, and X. A. Dimitropoulos. SEPIA:
Privacy-preserving aggregation of multi-domain network events and
statistics. In Proceedings of the USENIX Security Symposium, 2010.

[20] C. L. Canonne, G. Kamath, A. McMillan, A. Smith, and J. Ullman. The
structure of optimal private tests for simple hypotheses. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
2019.

[21] X. Cao, J. Jia, and N. Z. Gong. Data poisoning attacks to local dif-
ferential privacy protocols. In Proceedings of the USENIX Security
Symposium, 2019.

[22] A. Cheu, A. Smith, and J. Ullman. Manipulation attacks in local
differential privacy. ArXiv, abs/1909.09630, 2019.

[23] K. Chida, D. Genkin, K. Hamada, D. Ikarashi, R. Kikuchi, Y. Lin-
dell, and A. Nof. Fast large-scale honest-majority MPC for mali-
cious adversaries. Cryptology ePrint Archive, Paper 2018/570, 2018.
https://eprint.iacr.org/2018/570.

[24] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. TFHE: Fast
fully homomorphic encryption over the torus. Journal of Cryptology,

33(1):34–91, 2020.
[25] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable

computation of aggregate statistics. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

[26] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Proc. CRYPTO,
2012.

[27] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2017.

[28] Z. Ding, Y. Wang, Y. Xiao, G. Wang, D. Zhang, and D. Kifer. Free gap
estimates from the exponential mechanism, sparse vector, noisy max
and related algorithms. VLDB Journal, Feb. 2022.

[29] D. Durfee and R. Rogers. Practical differentially private top-k selection
with pay-what-you-get composition. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2019.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to
Sensitivity in Private Data Analysis. In Proceedings of the Theory of
Cryptography Conference (TCC), 2006.

[31] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Foundations and Trends in Theoretical Computer Science,
9(3–4):211–407, 2014. http://dx.doi.org/10.1561/040000004.

[32] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized
aggregatable privacy-preserving ordinal response. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS),
2014.

[33] V. Fang, L. Brown, W. Lin, W. Zheng, A. Panda, and R. A. Popa.
CostCO: An automatic cost modeling framework for secure multi-
party computation. Cryptology ePrint Archive, Paper 2022/332, 2022.
https://eprint.iacr.org/2022/332.

[34] D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Zhicong Huang,
C. Mouchet, B. Ford, and J.-P. Hubaux. UnLynx: A Decentralized
System for Privacy-Conscious Data Sharing. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), 2017.

[35] K. Gopinath and V. H. Gupta. An extended verifiable secret redis-
tribution protocol for archival systems. In Proc. First International
Conference on Availability, Reliability and Security, 2006.

[36] J. Groth. On the size of pairing-based non-interactive arguments. In
Proc. EUROCRYPT, 2016.

[37] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica. Querying the internet with PIER. In Proceedings of the
International Conference on Very Large Data Bases (VLDB), 2003.

[38] C. Ilvento. Implementing the exponential mechanism with base-2 dif-
ferential privacy. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2020.

[39] M. Keller. MP-SPDZ: A versatile framework for multi-party com-
putation. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2020.

[40] E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically
secure protocols and security under composition. In Proc. STOC, 2006.

[41] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[42] J. Liagouris, V. Kalavri, M. Faisal, and M. Varia. Secrecy: Secure
collaborative analytics on secret-shared data, 2022. arXiv:2102.01048.

[43] D. Lie and P. Maniatis. Glimmers: Resolving the privacy/trust quagmire.
Proceedings of the Workshop on Hot Topics in Operating Systems
(HotOS), 2017.

[44] E. Margolin, K. Newatia, T. Luo, E. Roth, and A. Haeberlen. Ar-
boretum: A planner for large-scale federated analytics with differential
privacy(extended version). Technical Report MS-CIS-23-03, University
of Pennsylvania, 2023.

https://eprint.iacr.org/2019/939
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://images.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2018/570
http://dx.doi.org/10.1561/040000004
https://eprint.iacr.org/2022/332


[45] F. McSherry and K. Talwar. Mechanism design via differential privacy.
In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS), 2007.

[46] I. Mironov. On significance of the least significant bits for differential
privacy. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2012.

[47] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang, and
R. Zeng. Differentially-private "draw and discard" machine learning.
arXiv preprint arXiv:1807.04369, 2018.

[48] D. Ramage and S. Mazzocchi. Federated analytics: Collabora-
tive data science without data collection, May 2020. Google
AI Blog, https://ai.googleblog.com/2020/05/federated-analytics-
collaborative-data.html.

[49] V. Rastogi and S. Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In Proceedings of the
ACM SIGMOD Conference, 2010.

[50] L. Reyzin, A. Smith, and S. Yakoubov. Turning HATE Into LOVE:
Homomorphic Ad Hoc Threshold Encryption for Scalable MPC. In
Proceedings of the International Symposium on Cyber Security Cryp-
tography and Machine Learning (CSCML), 2021.

[51] R. Rodrigues and P. Druschel. Peer-to-peer systems. Communications
of the ACM, 53(10):72–82, oct 2010.

[52] E. Roth, K. Newatia, Y. Ma, K. Zhong, S. Angel, and A. Haeberlen.
Mycelium: Large-scale distributed graph queries with differential pri-
vacy. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2021.

[53] E. Roth, D. Noble, B. Hemenway Falk, and A. Haeberlen. Honeycrisp:
Large-scale differentially private aggregation without a trusted core. In
Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP), Oct. 2019.
[54] E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce. Orchard: Dif-

ferentially private analytics at scale. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2020.

[55] E. Shi, T.-H. H. Chan, E. G. Rieffel, R. Chow, and D. X. Song. Privacy-
preserving aggregation of time-series data. In Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2011.

[56] A. Smith. Differential privacy and the secrecy of the sample, Sept.
2009. https://adamdsmith.wordpress.com/2009/09/02/sample-
secrecy/.

[57] N. Volgushev, M. Schwarzkopf, B. Getchell, M. Varia, A. Lapets, and
A. Bestavros. Conclave: Secure multi-party computation on big data.
In Proceedings of the ACM European Conference on Computer Systems
(EuroSys), 2019.

[58] A. Yao. Protocols for secure computations. In Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS), 1982.

[59] H. Zhang, E. Roth, A. Haeberlen, B. C. Pierce, and A. Roth. Fuzzi: A
three-level logic for differential privacy. In Proceedings of the ACM SIG-
PLAN International Conference on Functional Programming (ICFP),
2019.

[60] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, and M. Ponec. Peer-assisted content distri-
bution in Akamai NetSession. In 13th ACM SIGCOMM Conference on
Internet Measurement (IMC ’13), Oct. 2013.

[61] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An oblivious and encrypted distributed analytics
platform. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/
https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/

	Abstract
	1 Introduction
	2 Background 
	2.1 Differential Privacy
	2.2 MPC and AHE/FHE

	3 Overview 
	3.1 Threat model
	3.2 Strawman solutions
	3.3 Challenges
	3.4 Approach
	3.5 Roadmap

	4 Query planning 
	4.1 Input language
	4.2 Constraints and goals
	4.3 Program transformations
	4.4 Basic type inference; Vignettes
	4.5 Encryption-type inference
	4.6 Scoring

	5 Execution 
	5.1 Setup
	5.2 Key generation
	5.3 Input
	5.4 Processing
	5.5 Output

	6 Implementation 
	7 Evaluation 
	7.1 Experimental setup
	7.2 Cost of running queries
	7.3 Cost of query planning
	7.4 Effect on battery-powered devices
	7.5 Effects of heterogeneity
	7.6 Scalability

	8 Related Work 
	9 Conclusion 
	References

