
Accountable Virtual Machines

Andreas Haeberlen Paarijaat Aditya Rodrigo Rodrigues Peter Druschel

University of Pennsylvania Max Planck Institute for Software Systems (MPI-SWS)

Abstract

In this paper, we introduce accountable virtual ma-

chines (AVMs). Like ordinary virtual machines, AVMs

can execute existing software binaries, but they also

record non-repudiable information that allows auditors

to subsequently check whether the software behaved as

intended. AVMs provide strong accountability, which

is important, for instance, in distributed systems where

different hosts and organizations do not necessarily trust

each other, or where software is hosted on third-party

operated platforms. Unlike previous solutions, AVMs

can provide accountability for unmodified binary im-

ages and do not require trusted hardware. To demon-

strate that AVMs are practical, we have designed and

implemented a prototype AVM monitor, which is based

on VMware Workstation, and we have used it to detect

several common types of cheating in Counterstrike, a

popular online multi-player game.

1 Introduction

An accountable virtual machine (AVM) provides users

with the capability to audit the execution of a software

system by obtaining a log of the execution, and by com-

paring it to a known-good execution. This capability

is useful whenever users rely on software and services

running on machines owned or operated by third par-

ties. Auditing works for any binary image that executes

inside the AVM and does not require that the user trust

either the hardware or the accountable virtual machine

monitor on which the image executes. Several classes of

systems exemplify scenarios where AVMs are useful:

• in a competitive system, such as an online game or

an auction, users expect that other players do not

cheat, and that the provider of the service imple-

ments the stated rules faithfully;

• nodes in peer-to-peer and federated systems are ex-

pected to follow the common protocol and to con-

tribute their fair share of resources;

• customers of a cloud computing service expect the

provider to correctly execute their code.

In the above scenarios, software and hardware faults,

misconfigurations, break-ins, and deliberate manipula-

tion can lead to an abnormal execution, which can be

costly to users and operators, and may be difficult to de-

tect. When such a malfunction occurs, it is difficult to

establish which party is responsible for the problem, and

even more challenging to produce evidence that proves a

party’s innocence or guilt. For example, in a cloud com-

puting environment, failures can be caused both by bugs

in the customer’s software and by faults or misconfigu-

ration of the provider’s platform. In the case of a cus-

tomer’s bug, the provider would like to be able to prove

his innocence, and in the case of the faulty provider, the

customer would like to obtain proof of that fact.

AVMs address these problems by providing users

with the capability to detect faults, to identify the faulty

node, and to produce evidence that connects the fault to

the machine that caused it. This is achieved by running

systems inside a virtual machine that (1) maintains a log

with enough information to capture the entire execution

of the system, and that (2) associates each outgoing mes-

sage with a cryptographic record that links that action to

the log of the execution that produced it. The log en-

ables users to detect faults by replaying segments of the

execution using a known-good copy of the system, and

by cross-checking the externally visible behavior of that

copy with the previously observed behavior. AVMs can

provide this capability for any black-box binary image

that runs inside a virtual machine.

This paper makes three contributions: 1) it introduces

the concept of AVMs, 2) it presents the design of an

accountable virtual machine monitor (AVMM), and 3)

it demonstrates that AVMs are practical for a specific

application, namely the detection of cheating in multi-

player games. While AVMs are a general concept that

is potentially useful in other contexts, cheat detection

is an interesting example application because it is a seri-

ous and well-understood problem for which AVMs offer

considerable benefits: out of 26 real cheats we down-

loaded from the Internet, AVMs can detect every sin-

gle one – without prior knowledge of the nature of the

cheats or their implementation.

1

We have built a prototype AVMM that is based on

VMware Workstation, and we have used our prototype

to detect several real cheats in Counterstrike, a popu-

lar multi-player game. Our evaluation shows that the

costs of accountability in this context are moderate: the

frame rate drops by 14%, from 156 fps on bare hard-

ware to 134 fps on our prototype, the ping time increases

by about 5 ms, and each player must record a log that

grows by about 148 MB per hour after compression.

Most of this overhead is caused by running VMware

Workstation with logging enabled; the additional cost

for accountability is comparatively small. The log can

be transferred to other players and replayed there if the

game is contested.

While our evaluation in this paper focuses on games

as an example application, AVMs are a general concept

that is potentially useful in other contexts, e.g., to verify

that a cloud platform is providing its services correctly

and is allocating the promised resources [14]. Our pro-

totype AVMM already supports techniques such as par-

tial audits that would be useful in this context; however,

a full evaluation is beyond the scope of this paper.

The rest of this paper is structured as follows. Sec-

tion 2 discusses related work, Section 3 explains the

AVM approach, and Section 4 presents the design of our

prototype AVMM. Sections 5 and 6 describe our imple-

mentation and report evaluation results in the context of

games. Section 7 describes other applications and pos-

sible extensions, and Section 8 concludes this paper.

2 Related work

Deterministic replay: Our prototype AVMM relies on

the ability to replay the execution of a virtual machine.

Replay techniques have been studied for more than two

decades, usually in the context of debugging, and ma-

ture solutions are available [4, 11, 12]. However, replay

by itself is not sufficient to detect faults on a remote ma-

chine, since the machine could record incorrect infor-

mation in such a way that the replay looks correct, or

replay different executions to different auditors.

Recently, a lot of progress has been made on improv-

ing the scope and efficiency of replay systems. For ex-

ample, ODR [1] and SMP-ReVirt [12] offer logging and

replay for modern multiprocessor systems, DMP [10]

has reduced the logging overhead for multi-threaded

programs by making their original execution fully de-

terministic, and Remus [8] has introduced a highly effi-

cient snapshotting mechanism. AVMMs could directly

benefit from each of these improvements.

Accountability: Several systems are available to pro-

vide accountability for specific distributed applications,

including network storage services [30], peer-to-peer

content distribution networks [22], and interdomain

routing [2]. Unlike these systems, AVMs are not bound

to a particular application. PeerReview [15] is an ac-

countability system that can be applied to arbitrary ap-

plications. Our AVMM borrows components from Peer-

Review – in particular, its tamper-evident log. However,

PeerReview requires the target application to be deter-

ministic, and it must be closely integrated with the ap-

plication, which requires source code modifications and

a detailed understanding of the application logic. On

the one hand, this potentially results in lower overhead,

since knowing the application’s semantics enables many

useful optimizations. On the other hand, it is infeasible

to apply PeerReview to an entire VM image with dozens

of applications, and it is nearly impossible if some of the

software is only available in binary form. AVMs do not

have these limitations; they can make software account-

able ‘out of the box’.

Remote fault detection: GridCop [29] is a compiler-

based technique that can be used to monitor the progress

and the correct execution of a remotely executing pro-

gram by inspecting periodic beacon packets. GridCop

is designed for a less hostile environment than AVMs:

it assumes that the platform is trusted and that hosts are

motivated by self-interest. Also, GridCop does not work

for unmodified binaries, and it cannot produce evidence.

A trusted computing platform can be used to detect

if a node is running modified software [13, 20]. The

approach requires trusted hardware, a trusted OS ker-

nel, and a software and hardware certification infrastruc-

ture. Pioneer [26] can achieve a similar property using

only software; however, it relies on recognizing sub-

millisecond variations of the network round-trip time,

which restricts its use to LANs and small networks.

AVMs do not require any special hardware support, and

they can be used in wide-area networks.

Cheat detection: Cheating in online games is an impor-

tant problem that affects game players and game oper-

ators alike [18]. Several cheat detection techniques are

available, such as scanning for known hacks [17, 25] or

defenses against specific forms of cheating [5, 23]. In

contrast to these, AVMs are generic, that is, they are ef-

fective against an entire class of cheats. Chambers et

al. [7] uses bit commitment to detect if players lie about

their game state. Their approach is similar to the tamper-

evident logs used in AVMs; however, the log must be in-

tegrated with the game, while AVMs work for existing,

unmodified games.

3 Accountable Virtual Machines

3.1 Goals

Figure 1 depicts the basic scenario we are concerned

with in this paper (we explain later how to generalize

2

NetworkAlice Bob

Software S

Machine M

Figure 1: Scenario. Alice is relying on software S,

which is running on a machine that is under Bob’s con-

trol. Alice would like to verify that the machine is work-

ing properly, and that Bob has not modified S.

to other scenarios). Alice is relying on Bob to run some

software S on a machine M , which is under Bob’s con-

trol. However, Alice cannot observe M directly, she can

only communicate with it over the network. Bob claims

that M is working properly, that he has installed the soft-

ware without modifications and configured it correctly.

Our goal is to enable Alice to check whether S, when

executing on M , behaves the way she expects.

We assume that there is a reference machine MR that

produces the results Alice expects when executing S.

We say that two machines M1 and M2 are indistinguish-

able if, given the same initial state and the same se-

quence of inputs, they produce the same network output.

We call the machine M correct if it is indistinguishable

from the reference machine MR, provided that MR is

executing the software S. If M is not correct, we say

that it is faulty. For example, M could be faulty because

it is broken, or because Bob has accidentally misconfig-

ured it. Our goal is to provide the following properties:

• Detection: If M is faulty, Alice should be able to

detect this.

• Evidence: When Alice detects a fault on M , she

can obtain evidence that would convince a third

party that M is faulty, without having to trust ei-

ther Alice or Bob.

We are particularly interested in solutions that work for

any software S that can execute on MR. For example, S

could be a program binary that was compiled by some-

one other than Alice, it could be a complex application

whose details neither Alice nor Bob understand, or it

could be an entire operating system image running a

commodity OS like Linux or Windows.

3.2 Approach

To detect faults on M , Alice must essentially answer

two questions: 1) Which network messages did M send

and receive, and 2) is there a correct execution of the

software S that is consistent with these messages? The

former is easy when M is correct and Bob is honest,

but can be challenging otherwise. The latter is difficult

because the number of possible executions for any non-

trivial software is simply enormous.

Surprisingly, Alice can solve this problem by com-

bining two seemingly unrelated technologies: tamper-

evident logs and virtual machines. A tamper-evident

log [15] requires each node to record all the messages

it has sent or received. Whenever a message is trans-

mitted, the sender and the receiver must prove to each

other that they have added the message to their logs, and

they must commit to the contents of their logs by ex-

changing an authenticator – essentially, a signed hash of

the log. The authenticators provide nonrepudiation, and

they can be used to detect when a node tampers with its

log, e.g., by forging, omitting, or modifying messages,

or by cloning or splitting the log.

If Alice has obtained M ’s message log without de-

tecting any tampering, she must either find a correct ex-

ecution of S that matches this log, or establish that there

isn’t one. To help Alice with this, M can additionally

record some hints about the execution of S in the log.

This seems difficult at first because we have assumed

that neither Alice nor Bob have the expertise to make

modifications to S; however, Bob can avoid this by us-

ing a virtual machine monitor (VMM) to monitor the ex-

ecution of S and to extract inputs and nondeterministic

events in a generic, application-independent way. Alice

then can use deterministic replay [6, 11] to reconstruct a

correct execution, provided that one exists.

Although the combination of these two technologies

may seem obvious in hindsight, we will show that it nev-

ertheless results in a new and powerful capability.

3.3 AVM monitors

The above building blocks can be combined to con-

struct an accountable virtual machine monitor (AVMM),

which implements AVMs. Alice and Bob can use an

AVMM to achieve the goals from Section 3.1 as follows:

1. Bob installs an AVMM on the machine M and runs

the software S inside an AVM.

2. The AVMM maintains a tamper-evident log of the

messages M sends or receives, and it also records

hints about the execution of S. When Alice re-

ceives a message from M , she detaches the authen-

ticator and saves it for later.

3. Alice periodically audits M as follows: she asks

the AVMM for its log, verifies it against the au-

thenticators she has collected, and then uses deter-

ministic replay to check for faults.

4. If replay fails or the log cannot be verified against

one of the authenticators, Alice can give the soft-

ware, the log, and the authenticators to a third party,

who can repeat Alice’s checks and thus verify that

a fault has actually occurred.

This generic methodology meets our previously stated

goals: Alice can detect faults on M , she can obtain evi-

3

Alice Bob

Charlie

SA SB

SC

Alice Bob

Users

Software S

(a) Symmetric multi-party scenario (online game) (b) Asymmetric multi-party scenario (web service)

Figure 2: Multi-party scenarios. The scenario on the left represents a multi-player game; each player is running the

game client on his local machine and wants to know whether any other players are cheating. The scenario on the right

represents a hosted web service: Alice’s software is running on Bob’s machine, but the software typically interacts

with users other than Alice, such as customers.

dence, and a third party can check the evidence without

having to trust either Alice or Bob.

3.4 Does the AVMM have to be trusted?

A perhaps surprising consequence of this approach is

that the AVMM does not have to be trusted by Alice.

Suppose Bob is malicious and secretly tampers with Al-

ice’s software and/or the AVMM, causing M to become

faulty. Bob cannot prevent Alice from detecting this: if

he tampers with M ’s log, Alice can tell because the log

is tamper-evident; if he does not, Alice obtains the ex-

act set of observable messages M has sent and received,

and since by our definition of a fault there is no correct

execution of S that is consistent with these messages,

deterministic replay inevitably fails on Alice’s machine,

no matter what the AVMM recorded.

Bob must trust the AVMM to prevent Alice’s software

from taking over his machine; however, the same would

apply to any ordinary VMM. As long as the AVMM cor-

rectly runs Alice’s software, Alice’s can correctly replay

the resulting log.

3.5 Should Alice check the entire log?

For many applications, including the game we consider

in this paper, it is perfectly feasible for Alice to audit

M ’s entire log. However, for long-running, compute-

intensive applications, Alice may want to save time by

doing spot checks on a few log segments instead. The

AVMM can enable her to do this by periodically tak-

ing a snapshot of the AVM’s state; thus, Alice can inde-

pendently inspect any segment that begins and ends at a

snapshot. Of course, if Alice chooses to do spot checks,

she can only expect to detect faults that manifest them-

selves in the segments that she actually inspects.

Alice could use various heuristics to choose segments

to check. For example, she could inspect the most recent

segment when she receives a complaint, she could in-

spect critical segments where a fault would permanently

corrupt the AVM’s state, such as key generation phases,

or she could simply inspect a random sample of seg-

ments. Non-malicious faults, such as hardware faults or

misconfigurations, are likely to manifest themselves re-

peatedly and would be visible in even a small sample.

If Bob is planning to misbehave but has a reputation to

lose, random sampling would create a risk of detection

that may be sufficient to deter him.

3.6 Do AVMs work with multiple parties?

So far, we have focused on a simple two-party scenario;

however, AVMs can be used in more complicated sce-

narios. Figure 2 shows two examples. In the scenario

on the left, the players in an online multi-player game

are using AVMs to detect whether someone is cheating.

Unlike the basic scenario in Figure 1, this scenario is

symmetric in the sense that each player is both running

software and is interested in the correctness of the soft-

ware on all the other machines. Thus, the roles of au-

ditor and auditee can be played by different parties at

different times. The scenario on the right represents a

hosted web service: the software is controlled and au-

dited by Alice, but the software typically interacts with

parties other than Alice, such as Alice’s customers.

In terms of the AVMM algorithm, the only compli-

cation that arises from multi-party scenarios is that each

machine’s authenticators are now distributed over multi-

ple parties, and they must all be collected to ensure that

faults can be reliably detected. For example, suppose

that in the gaming scenario on the left, Alice wants to

audit Charlie’s machine. To detect if Charlie has been

acting differently towards herself and Bob, she must ask

Bob for copies of any authenticators that Charlie’s ma-

chine may have sent to Bob’s. In the scenario on the

right, Alice must collect authenticators from the users.

If all the users cooperate, Alice can detect all the faults.

4

If only a subset cooperates, she can still detect all the

faults that are observable by that subset [21].

For clarity, we will explain our system mostly in

terms of the simple two-party scenario in Figure 1, and

we will point out differences to the multi-party scenario

where necessary.

4 AVMM design

So far, we have introduced the concept of AVMs. To

demonstrate that AVMs are practical, we now present

the design of a specific AVMM.

4.1 Assumptions

Our design relies on the following assumptions:

1. All transmitted messages are eventually received,

if retransmitted sufficiently often.

2. All parties (machines and users) have access to a

hash function that is pre-image resistant, second

pre-image resistant, and collision resistant.

3. Each party has a certified keypair, which can be

used to sign messages. Neither signatures nor cer-

tificates can be forged.

4. If a user needs to audit the log of a machine, the

user has access to a reference copy of the VM im-

age that the machine is expected to use.

The first two are common assumptions made about prac-

tical distributed systems. In particular, the first assump-

tion is required for liveness, otherwise it could be im-

possible to ever complete an audit. The third assump-

tion could be satisfied by providing each machine with a

keypair that is signed by the administrator; it is needed

to prevent faulty machines from creating fake identities.

The fourth assumption is required so that the auditor

knows what is the ‘correct’ behavior.

4.2 Architecture

Our design instantiates each of the building blocks we

have described in Section 3.2: a VMM, a tamper-evident

log, and a mechanism for deterministic replay. Here, we

give a brief overview. Sections 4.4-4.5 describe each

building block in more detail.

For the tamper-evident log, we adapt a technique from

PeerReview [15], which already comes with a proof of

correctness [16]. We extend this log to also include the

VMM’s hints, and we add a mechanism for detecting

discrepancies between messages and hints, which could

arise, e.g., when a compromised VMM claims to have

received different messages than the ones in the log.

The VMM we have chosen for this design virtualizes a

standard commodity PC. This platform is attractive be-

cause of the vast amount of existing software that can

run on it; however, for historical reasons, it is harder to

virtualize than a more modern platform such as Java or

.NET. In addition, interactions between the software and

the virtual ‘hardware’ are much more frequent than, e.g.,

in Java, which can result in a higher overhead.

For auditing, we provide a tool that authenticates the

log, then checks it for tampering, and finally uses de-

terministic replay to determine whether the contents of

the log correspond to a correct execution of the refer-

ence software (i.e., the VM image that the machine is

expected to use). If the tool finds any discrepancy be-

tween the events in the log and the events occurring dur-

ing replay, this indicates a fault. Note that, while events

such as thread scheduling may appear nondeterminis-

tic to an application, they are in fact deterministic from

the VMM’s perspective. Therefore, as long as all ex-

ternal events (e.g. timer interrupts) are recorded in the

log, even race conditions are reproduced exactly during

replay and cannot result in false positives.1

4.3 Tamper-evident log

The tamper-evident log is based on the log used in Peer-

Review [15]. It is structured as a hash chain; each log

entry is of the form ei := (si, ti, ci, hi), where si is a

monotonically increasing sequence number, ti a type,

and ci data of the specified type. hi is a hash value

that must be linked to all the previous entries in the

log, and yet efficient to create. Hence, we compute it

as hi = H(hi−1 || si || ti ||H(ci)) and h0 := 0, H is a

hash function, and || stands for concatenation.

To detect when Bob’s machine M forges incoming

messages, Alice signs each of her messages with her

own private key. The AVMM logs the signatures to-

gether with the messages, so that they can be verified

during an audit, but it removes them before passing the

messages on to the AVM. Thus, this process is transpar-

ent to the software running inside the AVM.

To ensure nonrepudiation, the AVMM attaches an au-

thenticator to each outgoing message m. The authenti-

cator for an entry ei is ai := (si, hi−1, hi, σ(si ||hi)),
where the σ(·) operator denotes a cryptographic sig-

nature with the machine’s private key. M also in-

cludes hi−1 and si, so that Alice can recalculate hi =
H(hi−1 || si || SEND ||H(m)) and thus verify that the

entry ei is in fact SEND(m).
To detect when M drops incoming or outgoing mes-

sages, both Alice and the AVMM send an acknowledg-

ment for each message m they receive. Analogous to

above, M ’s authenticator contains enough information

for the recipient to verify that the corresponding entry

is RECV(m). Alice’s own acknowledgment contains just

a signed hash of the corresponding message, which the

1Ensuring deterministic replay on multiprocessor machines re-

quires special care. We will discuss this in Section 7.3.

5

AVMM logs for the auditor. When an acknowledgment

is not received, the original message is retransmitted a

few times. If Alice stops receiving messages from Bob’s

machine altogether, she can ask it to retransmit the last

few messages.2

When Alice wants to audit M , she retrieves a pair of

authenticators (e.g., the ones with the lowest and highest

sequence numbers) and challenges M to produce the log

segment that connects them. She then verifies that the

hash chain is intact. Because the hash function is second

pre-image resistant, it is computationally infeasible to

modify the log without breaking the hash chain; thus,

if M has reordered or tampered with a log entry in that

segment, or if it has forked or cloned its log, Alice can

detect this using this check.

4.4 Virtual machine monitor

In addition to recording all incoming and outgoing mes-

sages to the tamper-evident log, the AVMM logs enough

information about the execution of the software to en-

able deterministic replay.

Recording nondeterministic inputs: The AVMM must

record all of the AVM’s nondeterministic inputs [6, 11].

If an input is asynchronous, the precise timing within the

execution must be recorded, so that the input can be re-

injected at the exact same point during replay. Hardware

interrupts, for example, fall into this category. Note that

wall-clock time is not sufficiently precise to describe

the timing of asynchronous inputs, since the instruc-

tion timing can vary on most modern CPUs. Instead,

the AVMM uses a combination of instruction pointer,

branch counter, and, where necessary, additional regis-

ters.

Not all inputs are nondeterministic. For example,

the values returned by accesses to the AVM’s virtual

harddisk need not be recorded. The auditor knows the

system image that the machine is expected to use, and

can thus reconstruct the correct inputs during replay.

Also many inputs such as software interrupts are syn-

chronous, that is, they are explicitly requested by the

AVM. Here, the timing need not be recorded because

the requests will be issued again during replay.

Detecting inconsistencies: The tamper-evident log now

contains two parallel streams of information: Message

exchanges and nondeterministic inputs. Incoming mes-

sages appear in both streams: first as messages, and

then, as the AVM reads the bytes in the message, as a

sequence of inputs. If Bob is malicious, he might try

to exploit this by changing the bytes after the message

has been received on M , but before it is injected into the

AVM. To detect this, the AVMM cross-references mes-

2If Bob’s machine refuses to respond beyond a certain timeout,

Alice can use m as evidence. In practice, she might call Bob on the

phone and complain.

sages and inputs in such a way that any discrepancies

can easily be detected during replay.

Snapshots: To enable spot checking and incremen-

tal audits (Section 3.5), the AVMM periodically takes

a snapshot of the AVM’s current state. To save disk

space, snapshots are incremental, that is, they only con-

tain the state that has changed since the last snapshot.

The AVMM also maintains a hash tree over the state;

after each snapshot, it updates the tree and then records

the top-level value in the log. When Alice audits a log

segment, she can either download an entire snapshot or

incrementally request the parts of the state that are ac-

cessed during replay. In either case, she can use the hash

tree to authenticate the state she has downloaded.

Taking frequent snapshots enables Alice to perform

fine-grain audits, but it also increases the overhead.

However, snapshotting techniques have become very ef-

ficient; recent work on VM replication has shown that

incremental snapshots can be taken up to 40 times per

second [8] and with only brief interruptions of the VM,

on the order of a few milliseconds. Accountability re-

quires only infrequent snapshots (once every few min-

utes or hours), so the overhead should be low.

4.5 Auditing and replay

When Alice wants to audit a machine M , she performs

the following three steps. First, Alice obtains a segment

of M ’s log and the authenticators that M produced dur-

ing the execution, so that the log’s integrity can be ver-

ified. Second, she downloads a snapshot of the AVM at

the beginning of the segment. Finally, she replays the

entire log, starting from the snapshot, to check whether

the events in the log correspond to a correct execution

of the reference software.

Verifying the log: When Alice wants to audit a log

segment ei . . . ej , she retrieves the authenticators she

has received from M with sequence numbers in [si, sj].
Next, Alice downloads the corresponding log segment

Lij from M , starting with the most recent snapshot be-

fore ei and ending at ej; then she verifies the segment

against the authenticators to check for tampering. If this

step succeeds, Alice is convinced that the log segment

is genuine; thus, she is left with having to establish that

the execution described by the segment is correct.

If M is faulty, Alice may not be able to download

Lij at all, or M could return a corrupted log segment

that causes verification to fail. In either case, Alice can

use the most recent authenticator aj as evidence to con-

vince a third party of the fault. Since the authenticator

is signed, the third party can use aj to verify that log

entries with sequence numbers up to sj must exist; then

it can repeat Alice’s audit. If no reply is obtained, the

auditor will suspect Bob. Alice can also use auditing as

a last recourse when messages from the AVM have been

6

lost, including all retransmissions. In this case, Alice

can recover the messages from the machine’s log.

Verifying the snapshot: Next, Alice must obtain a

snapshot of the AVM’s state at the beginning of the log

segment Lij . If Alice is auditing the entire execution,

she can simply use the original software image S. Oth-

erwise she downloads a snapshot from M and recom-

putes the hash tree to authenticate it against the hash

value in Lij .

Verifying the execution: For the final step, Alice needs

three inputs: The log segment Lij , the VM snapshot,

and the public keys of M and any users who communi-

cated with M . The audit tool performs two checks on

Lij , a syntactic check and a semantic check. The syn-

tactic check determines whether the log itself is well-

formed, whereas the semantic check determines whether

the information in the log corresponds to a correct exe-

cution of S.

For the syntactic check, the audit tool checks whether

all log entries have the proper format, it verifies the cryp-

tographic signatures in each message and acknowledg-

ment, it compares the log against the set of authentica-

tors issued by M , and it checks whether each message

has been acknowledged. If any of these tests fail, the

tool reports a fault.

For the semantic check, the tool locally instantiates a

virtual machine that implements MR, and it initializes

the machine with the snapshot. Next, it reads Lij from

beginning to end, replaying the inputs, checking the out-

puts against the outputs in Lij , and verifying any snap-

shot hashes in Lij against a snapshots of the replayed

execution (to be sure that the snapshot at the end of Lij

is also correct). If there is any discrepancy whatsoever

(for example, if the virtual machine produces outputs

that are not in the log, or if it requests the synchronous

inputs in a different order), replay terminates and reports

a fault. In this case, Alice can use Lij and the authen-

ticators as evidence to convince Bob, or any other inter-

ested party, that M is faulty.

If the log segment Lij passes all of the above checks,

the tool reports success and then terminates.

4.6 Multi-party scenario

So far, we have described the AVMM in terms of the

simple two-party scenario. A multi-party scenario re-

quires two changes. First, when some user wants to au-

dit a machine M , he needs to collect authenticators from

other users that may have communicated with M . In the

gaming scenario in Figure 2(a), Alice could download

authenticators from Charlie before auditing Bob. In the

web-service scenario in Figure 2(b), the users could for-

ward any authenticators they receive to Alice.

Second, when one user obtains evidence of a fault, he

may need to distribute that evidence to other interested

parties. For example, in the gaming scenario, if Alice

detects that Bob is cheating, she can send the evidence

to Charlie, who can verify it independently; then they

can jointly decide never to play with Bob again.

4.7 Guarantees

Recall that we have defined a machine M as correct if it

is indistinguishable from a reference machine MR that

is running the software M is expected to run, and faulty

otherwise (Section 3.1). The AVMM offers the follow-

ing two guarantees:

• Completeness: If the machine M is faulty, a full

audit of M will report a fault and produce evidence

against M that can be verified by a third party.

• Accuracy: If the machine M is not faulty, no audit

of M will report a fault, and there cannot exist any

valid evidence against M .

These guarantees hold for any software that can run on

MR. Also, our design makes no assumptions about

the nature of the faults that can occur on M (as long

as it cannot invert the hash function or break crypto-

graphic keys), and it is robust against malicious behav-

ior by Bob, Alice, or any other user. If spot checking is

used, the completeness guarantee extends only to those

log segments that are actually audited. A proof of these

properties is included in Appendix A.

5 Application: Cheat detection in games

AVMs and AVMMs are general concepts, but for our

evaluation, we focus on one specific application, namely

cheat detection. We begin by characterizing the class of

cheats that AVMs can detect, and we discuss how AVMs

compare to the anti-cheat systems that are in use today.

5.1 How are cheats detected today?

Today, many online games use anti-cheating systems

like PunkBuster [25], the Warden [17] or Valve Anti-

Cheat (VAC) [27]. These systems work by scanning the

user’s machine for known cheats [17, 18, 25]; some al-

low the game admins to request screenshots or to per-

form memory scans. In addition to privacy concerns,

this approach has led to an arms race between cheaters

and game maintainers, in which the former constantly

release new cheats or variations of existing ones, and the

latter must struggle to keep their databases up to date.

5.2 How can AVMs be used with games?

Recall that AVMs run entire VM images rather than in-

dividual programs. Hence, the players first need to agree

on a VM image that they will use. For example, one of

them could install an operating system and the game it-

self in a VM, create a snapshot of the VM, and then

7

Total number of cheats examined 26

Cheats detectable with AVMs 26

... in this specific implementation of the cheat 22

... no matter how the cheat is implemented 4

Cheats not detectable with AVMs 0

Table 1: Detectability of random Counterstrike cheats

from popular Counterstrike discussion forums

distribute the snapshot to the other players. Each player

then initializes his AVM with the agreed-upon snapshot

and plays while recording a log to his local disk. Af-

ter the game, if a player wishes to reassure himself that

other players have not cheated, he can request their logs,

check them for tampering, and finally replay them using

his own, trusted copy of the agreed-upon VM image.

5.3 Which cheats can AVMs detect?

For replay to succeed, the VM images used during

recording and replay need to be virtually identical. If

different code is executed or different data is read at

any time, replay almost certainly fails soon afterward.

Because of this, any cheats that need to be installed on

the cheater’s machine in any way, e.g., as loadable mod-

ules, patches, or companion programs, can be detected

with an AVM. We hypothesize that this includes almost

all cheats that are in use today. To test this hypothe-

sis, we downloaded and examined 26 real Counterstrike

cheats from popular discussion forums on the Internet

(Table 1). We found that every single one of them would

have to be installed in the AVM with the game to be ef-

fective, and would therefore be detected.

Once cheaters know about AVMs, they can try to re-

engineer their cheats to avoid detection. We found that,

in principle, this is possible for 22 of the 26 cheats, e.g.,

for map hacks and aimbots. In practice, however, im-

plementing such an AVM-aware cheat would be diffi-

cult because the cheat could not run anywhere inside

the AVM. For example, an aimbot could no longer di-

rectly manipulate game state but would instead have to

either forge a log (including all the asynchronous events)

that has the desired effect but nevertheless produces the

same network output during replay, or forge local inputs

to aim the player’s weapon as desired, e.g., by inject-

ing fake mouse movements. While this is by no means

impossible, it raises the bar substantially.

We also found that four of the 26 cheats would be de-

tectable in any implementation because they cause the

network-visible behavior of the cheater’s machine to be-

come inconsistent with any correct execution. This in-

cludes cheats such as unlimited ammo, no fall damage,

or teleportation. For instance, if a player has k rounds

of ammunition and uses a cheat of any type to fire more

than k shots, replay inevitably fails because there is no

correct execution of the game software in which a player

can fire after having run out of ammunition. AVMs are

effective against any current or future cheats that fall

into this category.

5.4 Summary

We did not specifically design AVMs for cheat de-

tection, but they do offer three important advantages

over current anti-cheating solutions like VAC or Punk-

Buster: First, they protect players’ privacy by separat-

ing auditable state (the game in the AVM) from non-

auditable state (banking software running outside the

AVM). Second, they are effective against virtually all

current cheats, including novel, rare, or unknown cheats.

Third, they are guaranteed to detect all possible cheats

of a certain type, no matter how they are implemented.

6 Evaluation

In this section, we describe our AVMM prototype, and

we report how we used it to detect cheating in Coun-

terstrike, a popular multi-player game. Our goal is to

answer the following three questions:

1. Does the AVMM work with state-of-the-art games?

2. Are AVMs effective against real cheats?, and

3. Is the overhead low enough to be practical?

6.1 Prototype implementation

Our prototype AVMM implementation is based on

VMware Workstation 6.5.1, a state-of-the-art virtual

machine monitor whose source code we obtained

through VMware’s Academic Program. VMware Work-

station supports a wide range of guest operating sys-

tems, including Linux and Microsoft Windows, and its

VMM already supports many features that are useful

for AVMs, such as deterministic replay and incremental

snapshots. We extended the VMM to record extra infor-

mation about incoming and outgoing network packets,

and we added support for tamper-evident logging, for

which we adapted code from PeerReview [15]. Most

of the logging functionality is implemented in a sepa-

rate process that communicates with the VMM through

kernel-level pipes; thus, the AVMM can take advantage

of multi-core CPUs by using one of the cores for logging

and cryptographic operations and by running AVMs on

the other cores at full speed.

Since VMware Workstation only supports uniproces-

sor replay, our prototype is limited to AVMs with a sin-

gle virtual core (see Section 7.3 for a discussion of mul-

tiprocessor replay). We also implemented and tested

support for snapshots and incremental audits, but spot

checking offers little benefit for games because a com-

plete audit is practical, so we did not evaluate it in detail.

8

Our audit tool is implemented as a two-step process:

Players first perform the syntactic check using a separate

program and then run the semantic check by replaying

the log in a local AVM, using a copy of the VM image

they trust. If at least one of the two stages fails, they can

give the log and the authenticators as evidence to fellow

players – or, indeed, any third party. Because all steps

are deterministic, the other party will obtain the same

result.

6.2 Experimental setup

For our evaluation, we used the AVMM prototype to

detect cheating in Counterstrike, a popular first-person

shooter game. There are two reasons for this choice.

First, Counterstrike is played in a variety of online

leagues, as well as in worldwide championships such

as the World Cyber Games, which makes cheating a

matter of serious concern. Second, there is a large

and diverse ecosystem of readily available Counterstrike

cheats, which we can use for our experiments.

Our experiments are designed to model a Counter-

strike game as it would be played at a competition or at

a LAN party. We used three Dell Precision T1500 work-

stations, one for each player, with 2.8 GHz Intel Core i7

860 CPUs and 8 GB of memory. The machines were

connected to the same switch via 1 Gbps Ethernet links,

and they were running Linux 2.6.32 (Debian 5.0.4) as

the host operating system. One each machine, we in-

stalled an AVMM binary that was based on a VMware

Workstation OPT build. Each player had access to an

‘official’ VM snapshot, which contained Windows XP

SP3 as the guest operating system, as well as Counter-

strike 1.6. We configured the snapshot to disallow soft-

ware installation; thus, replay fails if a cheater tries to

install additional programs or modify existing ones.3 In

the snapshot, the OS is already booted and the player is

logged in without administrator privileges.

All players were using 768-bit RSA keys. These keys

are not strong enough to provide long-term security, but

in our scenario the signatures only need to last until any

cheaters have been identified, i.e., at most a few days or

weeks beyond the end of the game. In December 2009,

factoring a 768-bit number took almost 2,000 Opteron-

CPU years [3], so this key length should be safe for gam-

ing purposes for some time to come.

To quantify the costs of various aspects of AVMs, we

ran experiments in five different configurations. bare-

hw is our baseline configuration in which the game

runs directly on the hardware, without virtualization.

vmware-norec adds the virtual machine monitor with-

out our modifications, and vmware-rec adds the logging

for deterministic replay. avmm-nosig uses our AVMM

3Otherwise, downloading and installing a cheat would be re-

executed during replay without causing any discrepancies.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 0 5 10 15 20 25

L
o

g
 s

iz
e

 (
M

B
)

Time (minutes)

AVMM log
Equivalent VMware log

Figure 3: Log growth over time for Counterstrike.

implementation without signatures, and avmm-rsa768

is the full system as described. We disabled the frame

rate cap in Counterstrike, and we played each game for

at least ten minutes.

6.3 Functionality check

As a sanity check, we tried out four of the 26 Coun-

terstrike cheats with our prototype. For each cheat, we

created a modified VM image that had the cheat pre-

installed (recall that the original VM image disallows

software installation), and we ran an experiment in the

avmm-rsa768 configuration where one of the players

used the special VM image and activated the cheat. We

then audited each player; as expected, the audits of the

honest players all succeeded, while the audits of the

cheaters failed due to a divergence during replay.

Examples do not constitute proof, but recall from Sec-

tion 5.3 that AVMs can detect all of our 26 cheats by

design, so this merely validates our implementation.

6.4 Log size and contents

The AVMM records a log of the AVM’s execution dur-

ing game play. To determine how fast this log grows, we

played the game in the vmware-rec and avmm-rsa768

configurations, and we measured the log size over time.

Figure 3 shows the results for the avmm-rsa768 config-

uration. The log grows slowly while players are joining

the game (until about 3 minutes into the experiment) and

then continues to grow steadily during game play, by

about 8 MB per minute. For comparison, we also show

the size of an equivalent VMware log; the difference is

due to the extra information that is required to make the

log tamper-evident.

Figure 4 shows the average log growth rate for each

of the three configurations, as well as some details about

the content. More than 70% of the log consist of infor-

mation needed for replay, which in turn consists mainly

of TimeTracker entries (46%), which are used by the

VMM to record the exact timing of events, and MAC-

layer events (11%), such as incoming or outgoing net-

9

 0

 2

 4

 6

 8

 10

 12

 14

 16

VMware AVMM
(RSA-768)

A
v
e

ra
g

e
 l
o

g
 g

ro
w

th
 (

M
B

/m
in

u
te

) Tamper-evident logging

VMware other

VMware Ethernet

VMware TimeTracker

Figure 4: Average log growth for Counterstrike by con-

tent. The bars in front show the size after compression.

work packets. The tamper-evident logging is responsi-

ble for the remaining 30%. We also show results af-

ter applying bzip2 and a custom lossless compres-

sion algorithm we developed; this brings the average log

growth rate to 2.47 MB per minute.

From these results, we can estimate that a one-hour

game session would result in a 480 MB log, or 148 MB

after compression. Thus, given that current hard disk ca-

pacities are measured in terabytes, storage should not be

a problem, even for very long games. Also, if a player

is suspected of cheating, he must upload his log to his

fellow players. If the game is played over the Internet,

uploading a one-hour log would take about 21 minutes

over a 1 Mbps upstream link. This does not seem prob-

lematic because players can leisurely upload their logs

to other players in the background after the game has

ended. If the game is played over a LAN, e.g., at a com-

petition, the upload would complete in a few seconds.

6.5 Syntactic and semantic check

If a player is suspected of cheating, another player can

audit him by checking his log against the authenticators

(syntactic check) and by replaying his log using a trusted

copy of the VM image (semantic check). We expect the

syntactic check to be fast, since it is essentially a mat-

ter of verifying signatures, whereas the replay involves

repeating all the computations that were performed dur-

ing the original game and should therefore take about as

long as the game itself. Our experiments with the log of

the server machine from the avmm-rsa768 configuration

(which covers 1,501 seconds) confirm this: We needed

23.2 seconds to compress the log, 8.7 seconds to decom-

press it, 31.5 seconds for the syntactic check, and 1,370

seconds for the semantic check (1,433 seconds total).

Note that replay was actually a bit faster because the

AVMM skips any time periods in the recording during

which the CPU was idle.

Unlike performance during the actual game, the per-

formance of auditing does not seem overly critical be-

 0

 2

 4

 6

 8

 10

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA-768)

P
in

g
 r

o
u

n
d

-t
ri
p

 t
im

e
 (

m
s
)

Figure 5: Median ping round-trip times. The error bars

show the 5th and the 95th percentile.

cause it can be performed at leisure, e.g., in the back-

ground while the machine is used for something else,

and it can be omitted entirely if the outcome of the game

is not contested. In cases where cheating is suspected,

it seems like time well spent because it either exposes a

cheater or clears an innocent player of suspicion.

6.6 Network traffic

The AVMM increases the amount of network traffic for

two reasons: First, it adds a cryptographic signature

to each packet, and second, it encapsulates all packets

in a TCP connection. To quantify this overhead, we

measured the raw, IP-level network traffic in the bare-

hw configuration and in the avmm-rsa768 configura-

tion. On average, the machine hosting the game sent

34.3 kbps in bare-hw and 220.6 kbps in avmm-rsa768.

This high relative increase is partly due to the fact

that Counterstrike sends extremely small packets of 50–

60 bytes each, at 25 packets/sec, so the AVMM’s fixed

per-packet overhead (which includes two cryptographic

signatures) has a much higher impact than it would for

packets of average size. However, in absolute terms, the

traffic is still quite low and well within the capabilities

of even a slow broadband upstream. In Section 7.1, we

describe an optimization that would considerably reduce

this overhead for applications that transfer large objects,

such as web servers.

6.7 Latency

The AVMM adds some latency to packet transmissions

because of the logging and processing of authenticators.

To quantify this, we ran an AVM in five different con-

figurations and measured the round-trip time (RTT) of

100 ICMP Echo Request packets. Figure 5 shows the

median RTT, as well as the 5th and the 95th percentile.

Since our machines are connected to the same switch,

the RTT on bare hardware is only 240 µs; adding virtu-

alization increases it to 500 µs, logging to 620 µs, and

the daemon to above 2 ms. Enabling 768-bit RSA signa-

10

 0

 0.2

 0.4

 0.6

 0.8

 1

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA-768)

A
v
e

ra
g

e
 u

ti
liz

a
ti
o

n
Hyperthreads

Average (entire CPU)
12.5%

Figure 6: Average CPU utilization in Counterstrike for

each of the eight hyperthreads, and for the entire CPU.

tures brings the total RTT to about 5 ms. Recall that both

the ping and the pong are acknowledged, so four signa-

tures need to be generated and verified. Since the crit-

ical threshold for interactive applications is well above

100 ms [9], 5 ms seem acceptable for games. For other

applications, the overhead could be reduced by using a

more efficient signing algorithm, such as ESIGN [24].

6.8 CPU utilization

Compared to a Counterstrike game on bare hardware,

the AVMM requires additional CPU power for virtual-

ization and for the tamper-evident log. To quantify this

overhead, we measured the CPU utilization in five con-

figurations, ranging from bare-hw to avmm-rsa768. To

isolate the contribution from the tamper-evident log, we

pinned the daemon to hyperthread 0 in the AVMM ex-

periments and restricted the game to the other hyper-

threads (HTs). Figure 6 shows the average utilization for

each HT, as well as the average across the entire CPU.

To be conservative, we report numbers for the machine

that additionally runs the Counterstrike server.

The low numbers for HT 0 in the AVM experiments

(below 8%) show that the overhead from the tamper-

evident log is low. We also see that the game is con-

stantly busy rendering frames. Consider that the Coun-

terstrike rendering engine is single-threaded, so it can-

not run on more than one HT at a time. Because the OS

will sometimes schedule it on one HT and sometimes

on another, we expect to see an average utilization of

12.5% on the eight HTs, which our results confirm.

6.9 Frame rate

Since the game is constantly rendering frames, a more

meaningful metric for the CPU overhead is the achieved

frame rate, which we consider next. To measure the

frame rate, we wrote an AMX Mod script that incre-

ments a counter every time a frame is rendered. We read

out this counter at the beginning and at the end of each

game, and we divided the difference by the duration of

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Bare
hardware

VMware VMware
(recording)

AVMM
(nosig)

AVMM
(RSA768)

A
v
e

ra
g

e
 f

ra
m

e
 r

a
te

Figure 7: Frame rate in Counterstrike for each of the

three machines. The left machine was hosting the game.

the game. Figure 7 shows our results for each of the

three machines. The results vary because the frame rate

depends on the complexity of the scene being rendered,

and thus on the path taken by each player.

The frame rate on the AVMM is about 14% lower than

on bare hardware. The biggest overhead seems to come

from enabling recording in VMware Workstation, which

causes the average frame rate to drop by about 10%. In

absolute terms, the resulting frame rate (134 fps) is still

very high; posts in Counterstrike forums generally rec-

ommend configuring the game for about 40–60 fps.

To quantify the advantage of running some of the

AVMM logic on a different HT, we ran an additional ex-

periment with both Counterstrike and all AVMM threads

pinned to the same hyperthread. This reduced the aver-

age frame rate by another 8 fps.

6.10 Summary

Having reported our results, we now revisit our three ini-

tial questions. We have demonstrated that our AVMM

works out-of-the-box with Counterstrike, a state-of-the-

art game, and we have shown that it is effective against

real cheats we downloaded from Counterstrike forums

on the Internet. AVMs are not free; they affect various

metrics such as latency, traffic, or CPU utilization, and

they reduce the frame rate by about 14%, compared to

the rate seen on bare hardware. In return for this cost,

players gain the ability to audit other players if they sus-

pect them of having cheated. Auditing takes time, in

some cases as much as the game itself, but it seems

time well spent because it either exposes a cheater or

clears an innocent player of suspicion. AVMs provide

this novel capability by combining two seemingly unre-

lated technologies, accountability and virtualization.

7 Discussion

7.1 Other applications

In this paper, we have described the basic concept of

AVMs, and we have evaluated them in the context of

11

multi-player games. However, AVMs are application-

independent, and with some straightforward optimiza-

tions they could potentially be used in other contexts.

We have developed a set of extensions that could be used

to adapt AVMs for cloud computing [28], but here we

can only summarize them briefly due to lack of space.

In the cloud, AVMs face three main challenges: 1)

auditors cannot possibly replay the entire execution; 2)

accountable services must be able to interact with non-

accountable clients; and 3) it is not practical to sign ev-

ery single packet. The first challenge can be addressed

with spot checking (Section 3.5). To address the sec-

ond, we have developed two proxies that can mediate

between AVMs and legacy software by transparently

adding and removing authenticators as needed. One

proxy is a standalone application that interposes on TCP

and UDP connections; this can be used with many stan-

dard tools, such as ssh. The other is a combination

of JavaScript and a Java applet that is specifically opti-

mized for cloud-based web services.

To address the third challenge, we have added an ag-

gregator to the AVMM that extracts larger objects from

TCP connections. The aggregator works like a middle-

box, much like the proxies used by many cellular net-

works. For example, when a client requests a large im-

age from an AVM-enabled web server, the aggregator in

the AVMM interposes on the TCP connection, locally

downloads the entire image, attaches a single authen-

ticator to it, and only then forwards the image to the

client. This optimization slightly changes the TCP se-

mantics, but it dramatically reduces the CPU and net-

work overhead in this setting.

7.2 Using trust to get stronger guarantees

One of the strengths of AVMs is that they do not require

any trusted components to verify a remote node’s exe-

cution. However, if we extend the technique to include

such trusted components, we can obtain additional guar-

antees. The two extensions we discuss are secure local

input and trusted AVMMs.

Secure local input: AVMs cannot detect the hypo-

thetical re-engineered aimbot from Section 5.3 because

existing hardware does not authenticate events from lo-

cal input devices, such as keyboards or mice. Thus, a

compromised AVMM can forge or suppress local inputs,

and even a correct AVMM cannot know whether a given

keystroke was generated by the user or synthesized by

another program, or another machine. This limitation

can be overcome by adding crypto support to the input

devices. For example, keyboards could sign keystroke

events before reporting them to the OS, and an auditor

could verify that the keystrokes are genuine using the

keyboard’s public key. Since most peripherals gener-

ate input at relatively low rates, the necessary hardware

should not be expensive be build.

Trusted AVMM: If we can trust the AVMM that is

running on a remote node, we can also prevent informa-

tion leakage attacks, such as map hacks or transparent

walls. A trusted AVMM could establish a secure chan-

nel between the AVM and Alice (even if the software in

the AVM does not support encryption), and it could en-

sure that no information leaks occur through other chan-

nels, for example by preventing outside access to the

graphics card. If the trusted platform on Bob’s machine

includes trusted hardware, it may also prevent Bob from

reading the information directly from memory. Lastly,

remote attestation could be used to make sure that a

trusted AVMM is indeed running on a remote computer.

7.3 Replay for multiprocessors

We have not evaluated our prototype AVMM with multi-

processor VMs because the VMM we have chosen sup-

ports only deterministic replay for uniprocessors. SMP-

ReVirt [12] has recently demonstrated that replay is

also possible for multiprocessors, but its cost is sub-

stantially higher than the results we have shown here.

However, replay is a building block for many useful ap-

plications, such as forensics [11], replication [8], and

debugging [19]. Therefore, we believe that there is

considerable interest in developing more efficient tech-

niques. In fact, some important advances have already

been made [1, 10]. As more efficient techniques become

available, AVMMs can directly benefit from them.

8 Conclusion and future work

In this paper, we have introduced accountable virtual

machines (AVM), which allow users to audit software

executing on remote machines. An AVM can detect a

large and general class of faults, and it produces evi-

dence that can be verified independently by a third party.

At the same time, an AVM allows the operator of the re-

mote machine to prove that the machine has been work-

ing correctly.

To demonstrate that AVMs are feasible, we have de-

signed and implemented an AVMM that provides AVMs

on commodity PCs. We have applied AVMs to detect

several common forms of cheating in Counterstrike, a

popular online multi-player game, and our results show

that they are practical in this scenario. However, AVMs

are in no way specific to games; they have interesting

applications in other domains.

Interesting opportunities for future work include the

development of AVMMs that record less information

than needed for deterministic replay, e.g., using the ap-

proach from ODR [1], or detection methods that do not

require full replay, e.g., by skipping over computations

that do not contribute to network-level outputs.

12

References

[1] Gautam Altekar and Ion Stoica. ODR: Output-

deterministic replay for multicore debugging. In Pro-

ceedings of the 22nd ACM Symposium on Operating Sys-

tems Principles (SOSP), pages 193–206, October 2009.

[2] David Andersen, Hari Balakrishnan, Nick Feamster,

Teemu Koponen, Daekyeong Moon, and Scott Shenker.

Accountable Internet protocol (AIP). In Proceedings of

the ACM SIGCOMM Conference, pages 339–350, Au-

gust 2008.

[3] Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Em-

manuel Thomé, Joppe W. Bos, Pierrick Gaudry, Alexan-

der Kruppa, Peter L. Montgomery, Dag Arne Osvik,

Herman te Riele, Andrey Timofeev, and Paul Zimmer-

man. Factorization of a 768-bit RSA modulus. http:

//eprint.iacr.org/2010/006.pdf.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,

Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and

Andrew Warfield. Xen and the art of virtualization. In

Proceedings of the 19th ACM Symposium on Operat-

ing Systems Principles (SOSP), pages 164–177, October

2003.

[5] Nathaniel E. Baughman, Marc Liberatore, and

Brian Neil Levine. Cheat-proof playout for centralized

and peer-to-peer gaming. IEEE/ACM Transactions on

Networking, 15(1):1–13, February 2007.

[6] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-

based fault tolerance. ACM Transactions on Computer

Systems (TOCS), 14(1):80–107, 1996.

[7] Chris Chambers, Wu-Chang Feng, Wu-chi Feng, and

Debanjan Saha. Mitigating information exposure to

cheaters in real-time strategy games. In Proceedings of

the international workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSS-

DAV), pages 7–12, June 2005.

[8] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike

Feeley, Norm Hutchinson, and Andrew Warfield. Re-

mus: High availability via asynchronous virtual machine

replication. In Proceedings of the 5th USENIX Sympo-

sium on Networked Systems Design & Implementation

(NSDI), pages 161–174, April 2008.

[9] James Dabrowski and Ethan V. Munson. Is 100 millisec-

onds too fast? In Proceedings of the ACM CHI Con-

ference on Human Factors in Computing Systems, pages

317–318, April 2001.

[10] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark

Oskin. DMP: Deterministic shared memory multipro-

cessing. In Proceedings of the 14th International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 85–96,

March 2009.

[11] George W. Dunlap, Samuel T. King, Sukru Cinar, Mur-

taza Basrai, and Peter M. Chen. ReVirt: Enabling in-

trusion analysis through virtual-machine logging and re-

play. In Proceedings of the 5th Symposium on Operating

Systems Design and Implementation (OSDI), December

2002.

[12] George W. Dunlap, Dominic Lucchetti, Peter M. Chen,

and Michael Fetterman. Execution replay for multipro-

cessor virtual machines. In Proceedings of the Inter-

national Conference on Virtual Execution Environments

(VEE), March 2008.

[13] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosen-

blum, and Dan Boneh. Terra: A virtual machine-based

platform for trusted computing. In Proceedings of the

19th ACM Symposium on Operating Systems Principles

(SOSP), pages 193–206, October 2003.

[14] Andreas Haeberlen. A case for the accountable cloud.

In Proceedings of the 3rd ACM SIGOPS International

Workshop on Large-Scale Distributed Systems and Mid-

dleware (LADIS’09), October 2009.

[15] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel.

PeerReview: Practical accountability for distributed sys-

tems. In Proceedings of the 21st ACM Symposium on

Operating Systems Principles (SOSP), pages 175–188,

October 2007.

[16] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel.

PeerReview: Practical accountability for distributed sys-

tems. Technical Report 2007-3, Max Planck Institute for

Software Systems, October 2007.

[17] Greg Hoglund. 4.5 million copies of EULA-

compliant spyware. http://www.rootkit.com/

blog.php?newsid=358.

[18] Greg Hoglund and Gary McGraw. Exploiting On-

line Games: Cheating Massively Distributed Systems.

Addison-Wesley, 2007.

[19] Samuel T. King, George W. Dunlap, and Peter M. Chen.

Debugging operating systems with time-traveling virtual

machines. In Proceedings of the 2005 USENIX Annual

Technical Conference, Apr 2005.

[20] Dave Levin, John R. Douceur, Jacob R. Lorch, and

Thomas Moscibroda. Trinc: Small trusted hardware

for large distributed systems. In Proceedings of the 6th

USENIX Symposium on Networked Systems Design &

Implementation (NSDI), April 2009.

[21] Jinyuan Li, Maxwell Krohn, David Mazières, and Den-

nis Sasha. Secure untrusted data repository (SUNDR). In

Proceedings of the 6th Symposium on Operating Systems

Design and Implementation (OSDI), December 2004.

[22] Nikolaos Michalakis, Robert Soulé, and Robert Grimm.

Ensuring content integrity for untrusted peer-to-peer

content distribution networks. In Proceedings of the 4th

13

USENIX Symposium on Networked Systems Design &

Implementation (NSDI), April 2007.

[23] Christian Mönch, Gisle Grimen, and Roger Midtstraum.

Protecting online games against cheating. In Proceed-

iongs of the 5th Workshop on Network and System Sup-

port for Games (NetGames), page 20, October 2006.

[24] Tatsuaki Okamoto. A fast signature scheme based on

congruential polynomial operations. IEEE Transactions

on Information Theory, 36(1):47–53, 1990.

[25] PunkBuster web site. http://www.evenbalance.

com/.

[26] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Per-

rig, Leendert van Doorn, and Pradeep Khosla. Pio-

neer: Verifying code integrity and enforcing untampered

code execution on legacy systems. In Proceedings of the

20th ACM Symposium on Operating Systems Principles

(SOSP), October 2005.

[27] Valve Corporation. Valve anti-cheat system (VAC).

https://support.steampowered.com/

kb article.php?ref=7849-RADZ-6869.

[28] Alexander Wieder. Accountable web applications. Mas-

ter’s thesis, Max Planck Institute for Software Systems

(MPI-SWS), 2009.

[29] Shuo Yang, Ali R. Butt, Y. Charlie Hu, and Samuel P.

Midkiff. Trust but verify: Monitoring remotely execut-

ing programs for progress and correctness. In Proceed-

ings of the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP), June 2005.

[30] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong ac-

countability for network storage. ACM Transactions on

Storage, 3(3):11, 2007.

A Correctness

The guarantees in Section 4.7 essentially follow from

the properties of the tamper-evident log [16] and the fact

that replay is deterministic. We begin by proving the

following lemma, which is another way of stating the

log’s strong completeness property:

Lemma 1. If Alice performs a full audit of M , she ei-

ther learns the complete and accurate set of observable

messages M has sent or received, or she obtains evi-

dence against M that can be verified by a third party.

Proof. Recall from Section 4.5 that Alice audits M by

sending it two authenticators αi and αj and challeng-

ing it to return the segment Lij := ei . . . ej of M ’s

tamper-evident log. A full audit means that αi and αj

are the authenticators with the lowest and the highest

sequence numbers, respectively. Since the authentica-

tors are signed with M ’s private key, they would con-

vince any third party that the segment ei . . . ej must ex-

ist. Hence, if M refuses to return the segment, or re-

turns a segment with an invalid hash chain, Alice can

use (αi, αj) as evidence against M , and the claim holds.

Now suppose that M returns the requested segment,

and that its hash chain is intact. From this segment, Al-

ice can extract a set SR of received messages and a set

ST of transmitted messages. Because all messages are

signed and acknowledged, Alice can easily tell if the sets

are not accurate, that is, if they contain a message that

was not actually sent or received: If a message was not

sent, there cannot be an acknowledgment,4 since M can-

not forge the recipient’s signature; if a message was not

received, it cannot be properly signed for the same rea-

son. If either of these applies nevertheless, Alice can use

(Lij , αj) as evidence against M .

Alice can also tell if the sets are not complete. Be-

cause she has been collecting M ’s authenticators both

from messages she received herself (Section 3.3) and

from messages received by other correct nodes (Sec-

tion 4.6), she can tell if there is an authenticator αk with

i ≤ k ≤ j that is properly signed by M and nevertheless

does not correspond to an entry in Lij . In this case, she

can use (Lij , αj , αk) as evidence against M . Note that

we only claim that the sets contain all observable mes-

sages, that is, messages that either directly or transitively

affect a correct node. An example of a non-observable

message is a message m that M secretly sends

Theorem 1. If the machine M is faulty, a full audit of

M will report a fault and produce evidence against M

that can be verified by a third party.

Proof. From Lemma 1, we already know that the full

audit reveals the complete and accurate sets ST and SR

of all observable messages M has sent or received; oth-

erwise Alice obtains evidence against M , and the claim

follows trivially.

Now recall that, according to our definition in Sec-

tion 3.1, M is faulty if and only if it is distinguishable

from the reference machine MR, that is, if MR would

produce different network output given the same net-

work input and starting in the same state. Since Alice

has access to a reference copy of the VM image V (Sec-

tion 4.1), she knows the state in which M started, so

she could theoretically decide whether M is faulty by

enumerating all possible executions of V in which the

messages in SR were received, and by testing whether

at least one of them produces the messages in ST . This

4Here we rely on the assumption that Alice and Bob immediately

contact each other if they do not receive an acknowledgment from the

other side.

14

is not practical in general because for some V the num-

ber of candidate executions is infinite.

Crucially, however, M is required to commit to one

particular execution by including in the log Lij enough

information to enable deterministic replay. A correct M

can always achieve this by including information about

its actual execution; therefore, if 1) Alice cannot replay

the log on MR, or 2) replay succeeds but produces dif-

ferent messages, Alice knows that M must be faulty.

Conversely, if M is faulty, it is distinguishable from MR

by definition, so there is no correct execution of MR that

would produce the messages in ST , given the messages

in SR. Since Alice’s replay on MR can only produce

correct executions, replay must either fail or produce

different messages, no matter what information M in-

cludes in the log. This is the reason why Alice does

not need to trust the AVMM (Section 3.4). Furthermore,

any third party with access to MR and (Lij , αj , V) can

repeat Alice’s steps and, because replay is determin-

istic, obtain the same results. Hence, Alice can use

(Lij , αj , V) as evidence against M , and the claim fol-

lows.

Theorem 2. If the machine M is correct, a full audit of

M will not report a fault, and there cannot be any valid

evidence against M .

Proof. If M is correct, then (according to our definition

in Section 3.1) there is an execution of V on MR that,

given the same initial state and the same inputs, pro-

duces the same outputs. Hence, M can maintain a lin-

ear log that contains these messages, as well as enough

information to replay the correct execution. M can re-

spond to Alice’s audit request simply by returning the

appropriate segment from its log, and it is easy to see

that replay will succeed.

To see why there cannot be any valid evidence against

M , consider all the possible forms of evidence:

• If the evidence is a properly signed message m that

M supposedly did not acknowledge, M can simply

accept and acknowledge it when it is challenged

with m.

• If the evidence is a challenge to produce a log seg-

ment that connects two properly signed authentica-

tors (αi, αj), M can respond by returning ei . . . ej

from its log, since it would not have signed any

invalid authenticators, and we have assumed that

signatures cannot be forged.

• The evidence cannot be a pair (Lij , αj) such that

αj authenticates Lij and Lij contains an improp-

erly signed incoming message, because a correct

M would have ignored such a message. Lij also

cannot contain an unacknowledged outgoing mes-

sage because in such a case M would have sus-

pected the recipient and Bob would have immedi-

ately contacted them.

• The evidence also cannot be (Lij , αj , V) such that

αj authenticates Lij and replay of Lij starting from

V fails on MR because the only log that could

match M ’s authenticators is M ’s actual log (hashes

are pre-image resistant!) and M has recorded re-

play information for the correct execution we have

assumed to exist.

Therefore, any evidence that is presented against M can

either be refuted by M or must be internally inconsis-

tent. Either can be verified by a third party without hav-

ing to trust Alice or Bob.

15

