
CSAR: A Practical and Provable Technique to Make Randomized

Systems Accountable

Michael Backes1,2 Peter Druschel2 Andreas Haeberlen2,3 Dominique Unruh1

1 Saarland University 2 MPI-SWS 3 Rice University

Abstract

We describe CSAR, a novel technique for generating cryp-

tographically strong, accountable randomness. Using

CSAR, we can generate a pseudo-random sequence and

a proof that the elements of this sequence up to a given

point have been correctly generated, while future values

in the sequence remain unpredictable. CSAR enables ac-

countability for distributed systems that use randomized

protocols. External auditors can check if a node has devi-

ated from its expected behavior without learning anything

about the node’s future random choices. In particular, an

accountable node does not need to leak secrets that would

make its future actions predictable. We demonstrate that

CSAR is practical and efficient, and we apply it to imple-

ment accountability for a server that uses random sam-

pling for billing purposes.

1 Introduction

Nodes in distributed systems can fail for many reasons: a

node can suffer a hardware or software failure, an attacker

can compromise a node, or a node’s operator can deliber-

ately tamper with its software. Moreover, faulty nodes are

not uncommon [24]. As a system grows larger, it is in-

creasingly likely that some nodes are accidentally miscon-

figured or have been compromised as a result of unpatched

security vulnerabilities.

Recent work has explored the use of accountabil-

ity to detect and expose node faults in distributed sys-

tems [29, 15]. Accountable systems maintain a tamper-

evident record that provides non-repudiable evidence of all

nodes’ actions. Based on this record, a faulty node whose

observable behavior deviates from that of a correct node

can eventually be detected. At the same time, a correct

node can defend itself against any false accusations.

In PeerReview [15], for instance, each node maintains

a tamper-evident log, which records all messages the node

sends and receives as well as inputs and outputs of the ap-

plication. Any node i can request the log of another node j
and independently determine whether j has deviated from

its expected behavior. To do this, i replays j’s log using a

reference implementation that defines j’s expected behav-

ior. By comparing the results of the replayed execution

with those recorded in the log, PeerReview can detect ob-

servable Byzantine faults without requiring a formal spec-

ification of the system.

The approach taken by PeerReview is very general, but

it requires that each node’s actions be deterministic; other-

wise, a different non-deterministic choice by a node and its

reference implementation would be classified incorrectly

as a fault. One approach to ensure deterministic behav-

ior is to disclose, as part of a node’s record, the seed of

any pseudo-random number generator used in the node’s

program. Unfortunately, disclosing the seed also reveals

any secrets that were randomly chosen by the node and

makes the future sequence of pseudo-randomnumbers pre-

dictable. One could allow a node to choose a new seed

once it has proven that its past actions were fault-free.

However, this would allow a bad node to choose seeds

strategically, and thus to influence its own pseudo-random

numbers.

Thus, applying existing accountability techniques faces

us with a choice: we can make a node’s actions (including

its adherence to a pseudo-random sequence) accountable

at the expense of revealing the node’s secrets and making

its future actions predictable; or, we can protect a node’s

secrets and keep its future actions unpredictable, but give

up the ability to verify that the node is following a pseudo-

random sequence of actions.

Consider, for instance, a distributed algorithm that uses

some form of statistical sampling. We would like to be

sure that each node follows a truly random sequence of

samples to ensure unbiased results. However, disclosing a

node’s future random samples as a side-effect of auditing

the node’s past actions may allow an attacker to adapt his

behavior to the expected sampling, thus biasing the results.

As a result, existing accountability techniques are not ap-

propriate for such protocols.

1

1.1 Our contributions

We contribute CSAR, a technique for generating Crypto-

graphically Strong, Accountable Randomness. CSAR al-

lows us to apply accountability techniques to probabilistic

protocols without making their actions predictable. More

precisely, we propose a pseudo-random generator that sat-

isfies the following requirements:

1. The pseudo-random generator should output crypto-

graphically strong randomness. It is not sufficient for

the output of the generator to be uniformly distributed.

We require that the node generating the output should

only be able to compute values it could also compute

if the output was truly random.1

2. The pseudo-random generator should be accountable,

i.e., after each random value r is generated, it should

be possible to generate a proof that this value r was

indeed correctly derived from a given seed. Thus, if

a node generates a value incorrectly, it can be held

accountable because it cannot produce a valid proof.

3. Future random values of correct nodes should be un-

predictable, i.e., to a node that learns random val-

ues r1, . . . , ri and the corresponding proofs, all fu-

ture random values ri+1, . . . should still look random.

This excludes the obvious solution of using the ran-

dom seed as a proof.

4. Properties 1-3 should hold even if malicious nodes

are present while the seed is computed. In particular,

no node should be able to influence the output of its

own generator by choosing a suitable seed.

Additionally, both generating the randomness and verify-

ing the corresponding proofs should be highly efficient, in

order to limit the cost of accountability relative to the ac-

tual protocol execution. This requirement excludes a gen-

eral solution based on zero-knowledge proofs.

CSAR achieves these goals with a protocol in which

an initial coin-toss is followed by a combination of hash-

ing (where the hash function is modeled as a random or-

acle) and a trapdoor one-way permutation. Our construc-

tion essentially constitutes a chain of inverse trapdoor ap-

plications starting from the seed derived from the coin-toss,

where the sequence is partitioned into blocks by interme-

diate applications of the hash function. The hash function

is additionally used to transform elements of this sequence

into independent random values. The overall construction

1As a counterexample, consider a pseudo-random generator that pro-

duces random numbers as r = gx in some group G, where x is a random

element. The output of this generator is uniformly distributed, but the

node that generates r also knows the discrete logarithm of r - which it

could not know if r was a true random number.

resembles existing techniques for generating keys in cryp-

tographic file systems, e.g., [16, 1]. Elements in the se-

quence serve as a proof for former sequence elements and

hence for the corresponding random values, since a third

party can use the permutation to compute former sequence

values and compare themwith the random values that were

used. The hardness of inverting the trapdoor permutation

and the usage of the random oracle prevent a prediction

of future sequence elements. This construction is efficient

(requiring only a few hashes and multiplications in an RSA

group for each generation of a random value), and it can

be further optimized by exploiting number-theoretic prop-

erties of low-exponent RSA.

The security of CSAR is formally established by com-

paring it to an ideal specification of its expected behavior,

under the additional hypothesis that the surrounding pro-

tocol does not use the same hash function as that used for

generating the randomness. This corresponds to the well-

known simulatability paradigm of modern cryptography.

Among these, the Reactive Simulatability (RSIM) frame-

work [3] and the Universal Composability (UC) frame-

work [8] constitute the most prominent representatives;

they have been used to prove the security of various pro-

tocols. In particular, simulatability offers strong composi-

tionality guarantees.

CSAR can be used with different accountability tech-

niques; however, for concreteness, we present it in the

context of PeerReview. We implemented CSAR as an ex-

tension to the publicly available PeerReview library [25].

Adding support for accountable randomness enables the

use of PeerReview in applications that rely on unpre-

dictable random choices. Such applications include, for

instance, systems that rely on random sampling for secu-

rity monitoring or billing, randomized load balancing in

federated systems or randomized replica placement in dis-

tributed storage systems. Our evaluation shows that the

computational cost of our technique is low: on current

hardware and with a 1024-bit RSA modulus, a random

number can be generated in less than 20µs and verified

in less than 10µs. We also show that CSAR is practical

and that its storage and bandwidth costs are low, both in

relative and in absolute terms.

1.2 Related work

Verified random functions (VRFs) [22] and the stronger

simulatable VRFs [11] are closely related to the technique

proposed in this paper. However, even simulatable VRFs

cannot guarantee that the randomness produced by mali-

cious parties has strong properties when the malicious par-

ties release additional information about their seeds; hence

simulatable VRFs are not sufficient for the scenario consid-

ered in this paper. Furthermore, VRFs, and even more so

2

simulatable VRFs, are much less efficient than our tech-

nique. In CSAR, we obtain the improved efficiency, as

well as the ability to produce strong randomness when ma-

licious parties disclose their seeds, by applying the random

oracle model, which permits very efficient constructions.

Hash chains [18] can be used to generate verifiable

pseudo-random values. However, since each hash chain

can produce only a finite number of values, an upper bound

on the required output length must be known in advance.

Also, the hash chain must either be stored in memory or

recalculated from scratch after each invocation, both of

which are inefficient. Finally, the initial hash value must

remain secret, which enables an attacker to influence at

least some bits of his randomness by choosing a suitable

initial hash. None of these limitations apply to CSAR.

Accountability in distributed systems has been sug-

gested as a means to achieve practical security [19], to cre-

ate an incentive for cooperative behavior [13], and even

as a general design goal for dependable networked sys-

tems [28]. Several recent systems provide accountability

for deterministic systems [30, 23, 15]. None of these sys-

tems can hold a node accountable for its random choices

without also making its future choices predictable, which

can make the node vulnerable to attacks and exploits.

1.3 Outline

The remainder of this paper is organized as follows. Sec-

tion 2 reviews cryptographic preliminaries such as the ran-

dom oracle model and simulatable security notions. Sec-

tion 3 defines the security guarantees CSAR is designed to

fulfill. Sections 4 and 5 present the protocol for generat-

ing accountable randomness and its security proof, respec-

tively. Section 6 sketches the implementation of CSAR

in the context of PeerReview, while Section 7 discusses

applications of CSAR. Section 8 reports on experimental

results to measure the efficiency and storage consumption

of CSAR. Section 9 discusses possible variations of our

approach, and Section 10 concludes the paper.

2 Preliminaries

2.1 The random oracle model

The random oracle model [5] is one of the most popu-

lar heuristics in cryptography. The security of virtually

all practically deployed public-key encryption and signa-

ture schemes relies on the random oracle model, e.g., that

of the RSA-OAEP encryption scheme [6] specified in the

PKCS #1 standard [26].

The random oracle model formalizes the intuition that

a good cryptographic hash function has essentially no rec-

ognizable structure, i.e., the function can be expected to

behave like a completely random function. Instead of

proving the protocol under consideration with respect to

some fixed actual hash function H (e.g., SHA-1), proofs

in the random oracle model presuppose a function H :
{0, 1}∗ → {0, 1}l that is uniformly chosen from the set of

all such functions, i.e., for each value x, the value H(x)
constitutes a uniformly chosen value (with two calls to

H(x) returning the same value). The security of the pro-

tocol under consideration is then proven by granting the

protocol oracle-access to H ; the implementation, however,

uses the concrete hash function. Although (pathological)

protocols exist that violate the random oracle heuristics [9],

to the best of our knowledge there is no example of a practi-

cal protocol that is proven secure within the random oracle

model but whose implementation turns out to be insecure

when implemented with a sufficiently good cryptographic

hash function.

The random oracle model permits very efficient proto-

col constructions. In addition, the random oracle model

has the following advantage in our setting: our random-

ness generation protocol is only provably secure if it relies

on a different hash function than the one used in the appli-

cation protocol. For an actual hash function, this statement

is difficult to formalize properly since the application pro-

tocol might only compute parts of the hash function, or the

function might be obfuscated. If one relies on the random

oracle model, this statement can be naturally formalized

by not allowing the application protocol to query the ora-

cle H .

2.2 Low­exponent RSA

In the following sections, we consider the low-exponent

RSA permutation fn(x) := x3 mod n, where n is a ran-

dom RSA-modulus (a product of two random primes p and

q of the same length) of some length l with 3 ∤ ϕ(n) =
(p − 1) · (q − 1). The low-exponent RSA permutation is

a variant of the RSA permutation in which the public ex-

ponent e is instantiated as a small fixed number (in our

case e = 3). It is well known that naively using low-

exponent RSA in larger protocols is known to yield trou-

blesome scenarios. For example, using it as an encryption

scheme without additional padding allows an adversary to

recover a plaintext from seeing three encryptions of this

plaintext for three different public keys. However, it is a

well-accepted assumption that the low-exponent RSA per-

mutation itself is hard to invert. More exactly, we define

the following function ε3RSA.

Definition 1 Let ε3RSA(l, s) be the maximum probabil-

ity over all circuits of size at most s that, upon input

of a random RSA modulus n of length l and a random

y ∈ {0, . . . , n − 1}, the circuit outputs some x with

x3 ≡ y mod n.

3

The low-exponent RSA assumption for e = 3 (abbreviated

3RSA) can be formally stated as follows:

Assumption 1 (3RSA) For l(k) ∈ Ω(k) and any polyno-

mial s, ε3RSA(l(k), s(k)) is negligible.

The 3RSA assumption trivially follows from the well-

established strong RSA assumption [4]. In addition, the

function fn can be inverted efficiently if the factoriza-

tion of n = pq is known: One computes a secret key

d with 3d ≡ 1 mod ϕ(n) and then computes f−1
n (x) =

xd mod n. In other words, under the 3RSA assumption,

fn constitutes a trapdoor one-way permutation.

2.3 Simulatable security

The security guarantees CSAR is designed to fulfill will

be defined by an ideal functionality, which serves as a

specification of the protocol’s desired behavior. Simulat-

able security then aims at showing that a protocol is as

good as its ideal functionality. This is formalized by re-

quiring that for any adversary A that attacks the protocol

(i.e., an adversary that controls the malicious nodes and

may intercept information) there exists a simulator S that

attacks the ideal functionality of the protocol, such that

any third entity, called the environment and intuitively de-

noting the application built on top of the protocol, cannot

distinguish between a run of the real protocol with A and

an execution of the ideal functionality with S. This ap-

proach for defining properties of cryptographic systems is

widely used in the cryptographic community, where it is

known as UC security (Universal Composability) [8] or as

RSIM security (Reactive Simulatability) [3]; we refer to

these papers for the rigorous definitions. These definitions

provide very strong security and compositionality guaran-

tees [8, 2]. Compositionality constitutes a particularly im-

portant property in our setting since we want to use CSAR

within a larger context (with the application protocol and

with an accountability technique like PeerReview).

3 Desired security guarantees

We now formally define an ideal functionality that cor-

responds to the security properties CSAR is supposed to

achieve. The ideal functionality is defined as a collection

of machines M̃P , one for every entity P . Phrasing the

ideal functionality as a (collection of) machine(s) allows

us to meaningfully compare it to real protocols within ex-

isting simulatable security models, which are all machine-

based.

The behavior of the ideal functionality reflects the se-

curity properties informally outlined in Section 1.1. The

ideal functionality does not generate randomness accord-

ing to the protocol description; rather, it chooses truly ran-

dom values ri. The ideal functionality moreover ensures

that even malicious entities cannot lie about their random-

ness. However, malicious entities are allowed to predict

their own future random values even if these values have

not yet been used by the protocol; moreover, previously

used random values of honest entities are revealed to the

adversary. We give these powers to the malicious entities

in the ideal model to explicitly model the security require-

ments that are not fulfilled by our construction. Hence,

the ideal functionality captures the requirement that, intu-

itively, the randomness generated by CSAR is as good as

true randomness, up to the two imperfections mentioned

above. These imperfections can be eliminated if desired,

but the cost is a computationally more expensive solution,

cf. Section 9.

To model the generation of a single random value in

the real protocol, we let the functionality output a triple

(ri, si, bi) to the environment. Here ri corresponds to

the randomness, si to the audit information, and bi is a

bit which describes whether the audit information is valid.

That is, we assume that in the real protocol, any auditor

which sees si will immediately compute the correspond-

ing bit bi and consider this derived bit to be part of the

audit information. In the real protocol (assuming that it is

secure) the adversary will only have two choices: Either

it chooses ri honestly at random and chooses some audit-

ing information si such that bi = 1, or it chooses ri to

its liking, but then it may only produce auditing informa-

tion si such that bi = 0. In other words, while the real

protocol cannot be designed to output correct values ri for

malicious entities that deviate arbitrarily from the protocol,

we can ensure that incorrect values will fail the respective

tests. In the ideal functionality, this observation is reflected

in the assumption that the adversary can choose the out-

come bi of the test. If the adversary chooses bi = 0, it
may choose the “random” value; if the adversary chooses

bi = 1, true randomness is always returned. Furthermore,

if the entity is honest, only bi = 1 is allowed (as honest

agents will never produce invalid audit information). Our

security definition in particular does not require any prop-

erties about the si (only about the result of the verification

of the randomness, which is captured by the value of bi).

Consequently, si can be chosen by the adversary even in

the case of honest parties (this is a popular way to model

nondeterminism in cryptographic protocols).

Definition 2 (Ideal Functionality) The ideal 〈honest〉
[dishonest] machine M̃P for entity P performs the

following steps, given security parameters l1 and t2:

• Before the first activation, M̃P initializes an infinite

list of values r1, r2, . . . uniformly and independently

4

distributed over {0, 1}l1.2 [All values ri are made

accessible to the adversary, i.e., a query i from the

adversary is answered with ri.]
• Upon each activation, the inputs to the machine M̃P

are forwarded to the adversary.

• In M̃P ’s first environment activation, M̃P asks the

adversary for some values (n, q1, . . . , qt2). This tu-

ple (n, q1, . . . , qt2) is returned to the environment.

The values n, q1, . . . , qt2 correspond to values that

might be used in the setup phase, in order to estab-

lish a common random element.3

• In M̃P ’s second environment activation, a random

s ∈ {0, 1}l1 is chosen and returned. The value s
is also given to the adversary. (s corresponds to the

publicly known seed.)

• In each subsequent environment activation (indexed

consecutively, starting with i = 1), M̃P sends ri

to the adversary and asks the adversary for a tuple

(r̃i, si, bi). 〈Then M̃P returns (ri, si, 1).〉 [Then MP

returns (ri, si, 1) if bi = 1 and (r̃i, si, 0) otherwise.]

We check that each of the intuitive security require-

ments described in Section 1.1 is implied by this ideal

functionality: Property 1 holds because the ideal function-

ality chooses the random values ri in a truly random way,

even for the malicious parties. Property 2 is satisfied be-

cause the ideal function will ensure that bi = 0 unless

the adversary uses the honestly generated randomness ri.

Property 3 is ensured because the functionality will reveal

the random values ri corresponding to honest parties only

when an honest party actually requests them. Until then,

they are not accessed by any machine. Property 4 is ful-

filled because in the ideal model we have modeled that the

seed s is chosen in a truly random fashion by the func-

tionality. This implies that any protocol implementing the

functionality also has to choose the seed s in a random

fashion, even if malicious parties are involved.

Moreover, the functionality also explicitly models the

security imperfections of CSAR: The values ri of ma-

licious agents are revealed to the adversary in advance.

Whenever an honest agent uses a random value, that value

ri is revealed to the adversary (because in the real protocol,

it appears in the audit log). Malicious parties can actually

use non-random values r̃i; this is only detected by compar-

ing these values to the audit log. The fact that the ideal

functionality has to explicitly model all restrictions of the

protocol is considered one of the main advantages of sim-

ulatable security notions.

2Strictly speaking, the whole infinite list is not initialized at the begin-

ning of the protocol, but is lazily built up whenever a value ri is required.
3This step is needed for technical reasons because otherwise the out-

puts of the protocol described in the next section would look syntactically

different from the outputs of the ideal functionality, which is forbidden

by simulatable security definitions.

4 The CSAR protocol

We first explain the concepts we exploit in order to achieve

the desired security guarantees. Afterwards, we give the

formal description of our protocol for generating account-

able randomness.

4.1 Informal overview

4.1.1 Accountability and unpredictability

We first illustrate how we achieve the accountability and

the unpredictability of the pseudo-random generator, i.e.,

properties 2 and 3 from Section 1.1. Suppose P is an en-

tity that needs to generate random values. We assume that

there is a trapdoor one-way permutation f whose secret

key is known only to P (that is, only P can invert the per-

mutation). For now, we will also assume that there is a

well-known random seed s0; in Section 4.1.3, we describe

how this value is generated with an initial coin-toss.

Since P is the only entity that can invert the permuta-

tion f , it alone is able to compute elements of the sequence

si := f−1(si−1). The other entities do not have the secret
key of f and therefore cannot compute new elements, even

if they already know the old elements s0, . . . , si−1. How-

ever, all entities can evaluate f and can therefore validate

a new element si by checking whether f(si) = si−1 holds

true. Since f is a permutation, this check is equivalent

to si = f−1(si−1). (Our proof additionally ensures that

f constitutes a permutation even for incorrectly generated

keys, hence ensuring accountability for dishonest parties

as well.) Thus, we can achieve accountability for those val-

ues (by including all si in the audit log), and at the same

time, prevent future values from being predicted.

However, directly using the elements si as the desired

random values ri is not secure, because there is a strong

relationship between si and si−1 (one being the image of

the other under f), which would not be the case if the val-

ues were truly random. To avoid this, we use ri := H(si)
as the desired random value. When H is modeled as a

random oracle, H(ri) and H(ri−1) are decoupled and be-

come independent, random elements.

4.1.2 Strong cryptographic randomness

Providing strong cryptographic randomness in the sense

of property 1 from Section 1.1 is difficult in general. For-

tunately, the construction outlined above for computing

the values ri can already be shown to offer strong crypto-

graphic randomness, provided that 1) we modelH as a ran-

dom oracle, and that 2) we make the following change to

our construction: We first define a hash functionH∗(x) :=
H(1, x)‖ . . . ‖(t3, x) for a certain parameter t3. Then the

5

g0 g1 g2

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

r1 r2 r3 r4 r5 r6 r7 r8 r9

f −
1

n
f −

1
n

f −
1

n
H

∗

H
∗

H
∗

Hf−1

n f−1

n f−1

n f−1

n f−1

n f−1

n

H H H H H H H H H

fnfn fnfn fnfn

f−t1
n f−t1

n f−t1
n

Figure 1: The randomness generator for t1 = 3. The dashed lines depict the optimized variant from

Section 6.2.

images of this so-called padded hash function H∗ are long

enough to be used as arguments to f . Then, in every t1th
step for a parameter t1, the value si is not computed as

si = f−1(si−1) but as si = f−1(H∗(si−1)) (see Fig-

ure 1). In the following, we briefly describe how this adap-

tation enables the security proof in Section 5.

Recall that our work relies on the well-established ap-

proach of defining security by means of simulation. To

show that a sequence r1 is random, even given the side

information si and f (and if P is malicious, additionally

the secret key for f), we must show the existence of an

efficient machine called the simulator, which, given a se-

quence of values ri, can simulate a realistically looking

protocol execution that results in exactly these values. In

particular, it has to come up with realistic values for si and

f . Hence, if some property holds for the values ri in the

real protocol, the same property would also hold for the

truly random values ri in the simulation. For instance, if

one could compute the discrete logarithm of ri in the ex-

ecution of the real protocol, one could also compute the

discrete logarithm of the truly random ri in the simulation,

and since the latter is conjectured infeasible, it follows that

the discrete logarithm of ri cannot be computed in the real

protocol either – not even by P itself.

In our case, the simulation becomes possible because

H is modeled as a random oracle. Since the simulator has

to simulateH , it is free to choose the valuesH(x) in a suit-
able manner, as long as the distribution of H(x) is still uni-
form. For example, it can set H(si) := ri, provided that

it can recognize a value s = si. The construction of the ri

outlined above does not yet seem to entail an efficient way

to recognize such values because arbitrary values s may

occur, i might be arbitrarily large, and one would have to

test for arbitrarily many i whether f i(s) = s0 holds. This

is why we require the change described earlier, namely

that in every t1-th step, the value si is not computed as

si = f−1(si−1) but as si = f−1(H∗(si−1)). Thus, any

s = si fulfills f j(s) = H∗(x) for some j ≤ t1 and some

x. Since the simulator simulates the function H , it knows

all values H∗(x) that have been queried from H so far,

and thus it can efficiently check whether f j(s) = H∗(x)
holds for some x that has already been queried and for

some j ≤ t1. For values x that have not been queried, one

can easily show that this equation only holds with negligi-

ble probability.

In summary, these two modifications allow us to prove

that CSAR offers strong cryptographic randomness guar-

antees, even for randomness produced by malicious enti-

ties. We note that t1 = 1 is a perfectly fine choice from a

security point of view, but larger values of t1 can make the

implementation more efficient. We describe the details in

Section 6.2.

4.1.3 Choosing a suitable seed

We finally turn to the property of suitably choosing the

seed, in the sense of property 4 from Section 1.1. So far,

our construction presupposed that the initial seed s0 is cho-

sen randomly, and that the function f is chosen correctly,

even if P is malicious. A suitable choice of s0 can be en-

forced by choosing s0 with a coin-toss, which can easily

be implemented using the hash function H . Enforcing a

correct choice of f turns out to be more difficult. Since

the secret key of f must not be disclosed to any partici-

pant other than P , P chooses f on its own. This opens

the possibility that f could be badly-formed in one of the

following two ways.

First, f might not constitute a permutation. In this case,

the values si will not necessarily be uniformly distributed;

worse, some value si−1 may have several preimages si un-

der f , so that P may be able to choose the next random

value from these possible values. This can be prevented by

finding a way to prove that f indeed constitutes a permu-

tation. In particular, this will ensure accountability for dis-

honest users that might incorrectly generate their keys, but,

since the secret key must not be revealed, it is difficult to

prove in general. In the case of the low-exponent RSA per-

mutation, however, it turns out to be sufficient to show for

a few random values yi that all these values have a preim-

age under f . Hence, in order to prove that f constitutes a

6

permutation, CSAR computes values qµ = f−1(H(µ, n)),
where n is the RSA modulus used by f . We elaborate on

this in detail in Appendix A.

The second possibility is that an incorrectly chosen f
might have a small period, i.e., for some s0 and some µ,
we might have that sν+µ = fµ(sν) = sν and consequently

that rν+µ = rν . This is circumvented by including P and

i in all hash values. Hence, even in the case sν+µ = sν ,

we still have rν+µ 6= rν .

4.2 Formal description of CSAR

We now formally describe the protocol for generating ac-

countable randomness. CSAR is designed as a subprotocol

for inclusion in some larger application like PeerReview;

here, we only specify the routines for generating random-

ness and for generating and verifying the corresponding

proofs. Full-scale accountability is then provided at the

next layer, e.g., by PeerReview.

4.2.1 Parameters and additional notation

CSAR is parametrized by the following values: the value l1
is the length of H(x) for any x. The value l2 is the length

of the RSA modulus used. The values t1, t2, t3, t4 ≥ 1 de-

note integers satisfying t3l1 ≥ l2. The security of CSAR

will be guaranteed if t1, t2, t3l1 − l2, and t4 are of at least

linear size in the security parameter; see also Theorem 1

below. For the setup phase, we additionally need a func-

tion ω that maps each entity P to a set of other entities

ω(P) such that at least one entity in each set {P} ∪ ω(P)
is guaranteed to be honest during the setup phase. The

witness set function in PeerReview can be used for this

purpose.

We use the following notation: H(x) denotes an appli-

cation of the random oracle. When writing H(x, y, . . .)
we assume that the tuple (x, y, . . .) is encoded into a sin-

gle string in some efficiently decodable fashion. By H∗(x)
we denote H(1, x)‖ . . . ‖H(t3, x). Note that the length

of H∗(x) is at least l2. For an integer n (not necessar-

ily an RSA modulus), we write fn to denote the func-

tion fn(x) := x3 mod n. In a slight abuse of notation,

we write f−1
n (x) ∈ {0, . . . , n − 1} for the preimage of

x mod n under fn, provided that fn constitutes a permu-

tation on {0, . . . , n − 1}. Note though that even if f−1
n is

defined, it is the inverse of fn only on {0, . . . , n − 1}.

4.2.2 Setup phase

CSAR starts with a setup phase for generating the seed and

the permutation f . In this phase, each entity P performs

the following steps with the entities in ω(P):

• P chooses a random RSA modulus n such that 3 ∤
ϕ(n) and computes the secret key dwith 3d ≡ 1 mod
ϕ(n). P does not store the secret key in its audit log.

• P computes qµ := f−1
n (H∗(pk, µ, n)) for

µ = 1, . . . , t2 and sends a signed message

(pk, n, q1, . . . , qt2) to each entity in ω(P). Here pk

denotes an arbitrary but fixed string that is different

from the identifier of any entity.

• The entities in P ∪ {ω(P)} perform a coin-toss (see

below), which produces a random value s.
• Finally, P sets s0 := H∗(P, start, s) where P de-

notes a string encoding the identity of the entity P ,

and start denotes some arbitrary but fixed string that

is not an integer.

The setup phase includes a coin-toss subprotocol to pro-

duce a random value s. Entities P, P1, . . . , Pk perform

a coin toss as follows. First, they choose random values

r, r1, . . . , rk . Then each entity Pi computes ci := H(ri)
and produces a signature σi on ci. Next, all (ci, σi) are

sent to P . P sets c := H(r), h := (c, c1, σ1, . . . , ck, σk),
and produces a signature σ on h. Then each Pi checks all

signatures in h, produces a signature σ′

i on h, and sends

(ri, σ
′

i) to P . Finally, P checks all signatures σ′

i and sends

(r, r1, . . . , rk) to P1, . . . , Pk. The outcome of the coin toss

is s := r ⊕ r1 ⊕ · · · ⊕ rk.

The coin-toss subprotocol can easily be shown to pro-

duce a random value s, provided that at least one entity is

honest. All messages are signed, so that when plugging the

subprotocol into PeerReview, every entity can prove that it

indeed behaved correctly (since the coin-toss subprotocol

is only invoked once, the communication and computation

overhead induced in particular by the signatures is accept-

able). We do not require the value s to remain secret; this

strongly facilitates performing a secure coin toss, in partic-

ular in the random oracle model.

4.2.3 Generating random values

To generate a random value ri and the corresponding audit

information, an entity P performs the following steps. Let

i be a sequential index, starting at i = 1. If t1 | i − 1, P
sets si := f−1

n (H∗(P, i − 1, si−1)); if t1 ∤ i − 1, P sets

si := f−1
n (si−1). P then chooses ri := H(P, i, si) and

stores si, ri in the audit log.

4.2.4 Verifying random values

To verify a random value ri, an auditor evalu-

ates the following function Verify on the values

(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si), where P is a string en-

coding the identity of the entity P , s is the value computed

in the coin-toss, ri is the current random value, q1, . . . , qt2

are the values sent in the setup phase and s1, . . . , sn are

the values found in the audit log.

7

Definition 3 (Verification function) When invoked as

Verify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si) with i ≥ 1, the
function Verify performs the following checks:

• sµ

?
∈ {0, . . . , n − 1} for µ = 1, . . . , i.

• fn(qµ)
?
≡ H∗(pk, µ, n) mod n for µ = 1, . . . , t2.

• fn(sµ)
?
= sµ−1 for all µ = 1, . . . , i with t1 ∤ µ − 1.

• fn(sµ)
?
≡ H∗(P, µ − 1, sµ−1) mod n for all µ =

1, . . . , i with t1 | µ−1 where s0 := H∗(P, start, s).

• ri
?
= H(P, i, si mod n).

An implementation does not need to perform all these

checks upon each invocation of Verify . Since only one

new value si occurs for each new randomness query, each

evaluation of Verify essentially uses one application of fn

(costing two multiplications) and some hashing. Further-

more, at most t1 values si need to be stored when such an

incremental evaluation of Verify is used.

5 Security proof

We now formally establish the security guarantees offered

by CSAR by comparing it to the ideal functionality pre-

sented in Section 3.

We first phrase the protocol in terms of an I/O machine

that can be meaningfully compared to the ideal function-

ality in the simulatable security models. To facilitate the

modeling, we include both the generation of the random-

ness and the verification of the proofs using Verify in a

single machine MP for every entity P . In a real imple-

mentation, these two algorithms would of course run on

different machines; in particular, Verify would be evalu-

ated several times.

Definition 4 (Real machine) The real 〈honest〉
[dishonest] machine MP for entity P performs the

following steps:

• In the first activation by the environment, 〈MP gen-

erates the values (n, q1, . . . , qt2) honestly according
to the randomness generation protocol〉 [asks the ad-
versary for some values (n, q1, . . . , qt2)]. This tu-

ple (n, q1, . . . , qt2) is returned to the environment.
• In MP ’s second environment activation,MP chooses

a random s ∈ {0, 1}l1 and returns s to the environ-

ment. The value s is also given to the adversary.4

• In each subsequent environment activation (the

i-th randomness query, starting with i = 1),
〈MP generates the values ri, si according

4Here we simplify: Instead of using the coin-toss subprotocol, we

assume that the initial seed s is chosen as true randomness. A complete

treatment would have to prove that the coin-toss subprotocol presented

above actually returns a truly random s. At this point, however, we treat

the subprotocol as a black-box since it uses only well-known techniques.

to the randomness generation protocol〉 [MP

asks the adversary for values ri, si]. Then

bi := Verify(P, n, s, ri, q1, . . . , qt2 , s1, . . . , si)
is computed.5 MP returns the triple (ri, si, bi) to the

environment.

The security property of CSAR can now be formally stated

as follows:

Theorem 1 Let l1, l2, t1, t2, t3, #Π be polynomi-

ally bounded in some security parameter k, and

l2, t2, (t3l1 − l2) ∈ Ω(k), and assume that the 3RSA

assumption holds.

Let a set Π of entities be given of which an arbitrary

number may be malicious. Then for any polynomial-time

machine A there exists a polynomial-time machine S such

that for any environment Z that does not access the ran-

dom oracle H the following holds: let PR denote the prob-

ability that Z outputs 1 after running together with A and

real machines MP for all P ∈ Π. Let PI denote the prob-

ability that Z outputs 1 after running together with S and

ideal machines M̃P for all P ∈ Π. Then |PR − PI | is
negligible in the security parameter k.

Constraining the environment Z to not access the random

oracle H translates into the requirement that the protocol

we wish to make accountable using CSAR is not allowed

to use the hash function H . This does not imply, however,

that H has to be secret, since we allow the adversary to

access H . (The formal consequence of disallowing Z’s

access to H is that the simulator now can simulate any

values H(x) as long as these values look random. This is

crucial for our simulation proof.)

For reasons of space, we only briefly sketch the proof

of Theorem 1. The full proof as well as concrete security

bounds are given in Appendix A.

Proof sketch. The proof is conducted in three main steps.

First, we define a variant of the real execution where the

random oracleH is replaced by a simulation H̃ . Internally,

the simulation H̃ vastly differs from H , but it is designed

to still give (almost) uniformly distributed outputs H̃(x).
We call the execution using H̃ the hybrid execution, re-

flecting that it is a mix of the real and the ideal execution.

Then we define several events that represent various possi-

ble failures or imperfections of the simulation H̃ , and we

show that the probability PrBAD of these events is negli-

gible. Next, we show that, unless these events occur, the

outputs of H̃ have the same distribution as those of H . We

then proceed to construct the simulator S; this construction
is strongly simplified by the fact that the oracle H̃ already

5Note that the value bi is computed correctly even for malicious P ,

since bi is not part of the output of P , but represents whether or not the

output of P would pass the tests.

8

computes all values necessary for the execution of S. Fi-
nally, we show that, unless one of the above-mentioned

events occurs, the hybrid and the ideal execution have the

same distribution. Hence, the distribution of the output of

Z in the real and the ideal execution differ only by PrBAD .

6 Implementation

We implemented CSAR as an addition to

libpeerreview, which is an open-source imple-

mentation of PeerReview that was written by the authors

of [15] and is publicly available from [25]. In total, we

added or modified 1984 lines of code.

6.1 Integration with PeerReview

Our implementation is transparent to the user and works

without modifications to existing application code; it sim-

ply replaces the library’s getRandom function. When

CSAR is enabled, faulty nodes can no longer predict fu-

ture random values of a correct node. In addition, nodes

can be exposed as faulty if they change their random seed

after startup.

Internally, our code extends the application’s state ma-

chine to (i) run the randomness generation protocol when

a node is started for the first time, and to (ii) respond

to coin-toss messages from other nodes. We could have

added these elements as a meta-protocol instead, but our

approach has the advantage that the additional steps can be

checked natively by PeerReview. Thus, we do not need a

separate mechanism to detect if a node breaks the random-

ness generation protocol or ignores a coin-toss message.

We also extended the log format with additional entries

for the si. Checkpoints now include the tuple (l2, t, i, si),
where i is the index of the last random number generated,

as well as the state of the randomness generation protocol

(while it is active). This is necessary because the witnesses

need to be able to start auditing from a recent checkpoint.

Our implementation uses SHA-1 hashes for H , which

implies a hash length of l1 = 160 bits, and it chooses

the size of H∗ as t3 = l1 ·
(⌈

l2
l1

⌉

+ 1
)

. The randomness

generation protocol transfers t2 = 5 preimages of length

t4 = 480 bits. The length l2 of the RSA modulus and the

spacing t1 between hashes in the si-sequence can be freely

chosen by the user.

6.2 Higher efficiency with precomputation

In a straightforward implementation of CSAR, the most

expensive operation is generating a random number. Ver-

ification is efficient because it only involves applying fn

to each value, and, since fn has been chosen as fn(x) =

x3 mod n, it can be computed with two multiplications

modulon. On the other hand, generating a random number

requires evaluating f−1
n (x) = xd mod n, which involves

an exponentiation modulo n and is therefore expensive.

However, we can amortize the cost of the exponenti-

ation across several random values. We exploit that for

any m and any j ∈ {1, . . . , t1}, we have that smt1+j =
f−j

n (gm), where gm := H∗(P, mt1, smt1). In particu-

lar, s(m+1)t1 = f−t1
n (gm) and smt1+j = fn(smt1+j+1)

for j = {1, . . . , t1 − 1}. Hence, we can efficiently com-

pute an entire block of values smt1+1, . . . , s(m+1)t1 by

computing the last value first, and then deriving the other

values by applying fn t1 − 1 times (this corresponds to

the dashed lines in Figure 1). Additionally, note that

f−t1
n (x) ≡ xdt1

≡ xc mod n with c := dt1 mod ϕ(n).
Since c needs to be computed only once, the cost for eval-

uating f−t1
n is essentially one exponentiation modulo n.

In summary, our implementation computes the se-

quence si in blocks of t1 values. If t1 is sufficiently large,

the amortized cost per random value is essentially two mul-

tiplications modulo n. This is confirmed by our bench-

marks in Section 8.1.

7 Applications

Randomness is an important instrument in the design

of many distributed algorithms. Ensuring accountable

pseudo-randomness is important in systems where (i) it is

important to be able to detect when a node deviates from an

expected sequence of pseudo-random values; and, (ii) pre-

dicting future values in a node’s pseudo-random sequence

may allow an attacker to gain an advantage.

In this section, we give a few examples of existing and

prospective applications that use randomness in this way.

In each case, CSAR can be used to add accountability to

these applications without exposing them to attacks.

7.1 Sampling

Some applications use statistical sampling to estimate the

properties of a large system. For example, Massoulié et

al. propose a technique to aggregate statistics of peers in

a peer-to-peer system using random walks or random sam-

ples [21]. A node that performs these samples must follow

a pseudo-random sequence, else it could bias the results.

However, if an attacker can predict future pseudo-random

values generated by benign nodes, it can bias the random

walk towards nodes under its own control or adjust its re-

sponse to the sampling query and thereby influence the

sampled value.

Random sampling is also used to measure resource us-

age. For example, many routers implement NetFlow [12],

which provides IP flow information that ISPs use for

9

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
/o

p
e
ra

ti
o
n
 [
m

ic
ro

s
e
c
o
n
d
s
]

Parameter t1

Generate random number
Generate (with precomputation)

Verify random number

(a) Average time required to generate and verify a random

number

 0

 200

 400

 600

 800

 1000

 1200

 1 10 100 1000

L
o
g
 s

ta
te

/o
p
e
ra

ti
o
n
 [
b
it
s
]

Parameter t1

(b) Average amount of state that must be revealed to the au-

ditor per random number

Figure 2: Microbenchmarks. With t1 = 100 and an RSA modulus of l2 = 1024 bits, a node can generate a

random number in 19µs, and an auditor can verify its choice in 6.1µs, given 10.2 bits of information.

billing purposes. In this case, customers wish to verify

that the sampling is truly random; however, if customers

were able to predict the sampling pattern, they could delay

their own traffic when the ISP is about to take a sample,

and thus make their resource usage appear lower.

7.2 Randomized replication

LOCKSS [20] is a distributed storage system for long-term

data preservation. In LOCKSS, documents are replicated

across a large number of independent storage nodes. To re-

pair damage from data corruption, the storage nodes peri-

odically compare their own version of each document with

a number of other nodes. If there is another version that is

much more common, they replace their local version with

it. Many steps of this protocol are heavily randomized, so

as to make it difficult for an attacker to predict the actions

of a correct node.

LOCKSS would benefit from accountability because it

could detect and remove faulty nodes early. However, ex-

isting techniques cannot be used because the logs would

have to contain the random seeds, and thus correct nodes

would be predictable. This would undermine the security

of the entire system. This is not the case with CSAR, since

the logs do not reveal information about a node’s future

actions.

7.3 Load balancing

Some systems use randomness to distribute the load evenly

across a set of servers. For example, the TotalRecall stor-

age system places replicas of objects on a random set of

nodes [7]. If a node was able to predict this choice, it could

insert a small dummy object whenever it knows that it will

be chosen next. Thus, it could reduce its own storage load

at the expense of other nodes.

A similar challenge occurs in anycast services such

as [10], where requests are forwarded along a tree. If a

leaf node can predict from the seed values of the interior

nodes that the next request will be forwarded to it, it can

insert a particularly cheap request and thus cause the more

expensive requests to be forwarded to other nodes, in order

to shed load unfairly.

8 Evaluation

8.1 Microbenchmarks

We begin by discussing the cost of the two fundamental op-

erations in CSAR, namely (i) generating a random number

on a node, and (ii) verifying a random number that was

generated on another node. To quantify the average cost

per operation, we executed each operation 10, 000 times

in a tight loop, using a RSA modulus of l2 = 1024 bits

and varying the batching parameter t1. The hardware we
used was a Sun V20Z rack server, which has a 2.5 GHz

AMD Opteron CPU. Figure 2(a) shows our results.

Without precomputation, it takes 1200µs to generate a

random number, and 12.7µs to verify one. The numbers

vary little with t1, which is expected because the cost of

exponentiation dominates the cost of hashing. However,

if we compute random numbers in blocks of t1 values, as

described in Section 6.2, the average cost drops quickly

with t1. With t1 = 500, a random number can be gener-

ated in only 9.1µs and verified in only 6.0µs. This shows
that our optimization is effective, and it demonstrates that

the overhead from random number generation should be

insignificant for most applications.

10

 1

 10

 100

 1000

512 1024 2048 4096

T
im

e
/o

p
e
ra

ti
o
n
 [
m

ic
ro

s
e
c
o
n
d
s
]

Length of RSA modulus [bits]

Generate (with precomputation)
Verify random number

Figure 3: Key length. The cost per operation in­
creases with the length of the RSA modulus.

In Figure 2(b), we show the average amount of state

that a node must disclose to an auditor for each random

value it generates. If random numbers are generated reg-

ularly, the node only needs to disclose one si, i.e. l2 bits,

for each block of t1 random numbers; hence, the overhead

drops quickly with t1. With t1 = 500, only 2 bits need to

be disclosed on average, although one additional si must

be disclosed during each audit if t1 ∤ i. This overhead is in-
significant, given that the logs of accountable applications

can grow by several megabytes per hour [15].

Figure 3 shows how the average cost per operation in-

creases with the length of the RSA modulus. For this ex-

periment, we chose t1 = 100 and used the same hardware

as above.

8.2 Application­level benchmark

To estimate the overall impact of these costs, we imple-

mented a simple demo application, which consists of a

web server and k clients. The web server allows its clients

to store, retrieve, or delete objects in its store, and it

charges them using a simple random sampling technique:

at random intervals, it picks a random file from its store,

and it charges the owner one credit point. It is clearly

desirable to make such a server accountable to its clients,

since otherwise it might charge arbitrary amounts; how-

ever, without CSAR, this is difficult to accomplish because

clients would gain the ability to predict when one of their

files will be sampled, and could avoid the charge by tem-

porarily removing that file.

We performed a simulation experiment in which we ran

this server with k = 5 clients for one hour. On average,

the server stored 1000 files with an average size of 10kB,
one of which was requested every second. The expected

number of samples per second was five, i.e. random num-

bers were used at the rather high rate of ten per second.

The parameters we chose were l2 = 1024 and t1 = 100.
We ran the simulation twice, once using CSAR to generate

the random numbers and once using the lrand function

from GLIBC (which reveals the random seed to the audi-

tor). The workload in the two simulations was identical.

We found that CSAR changed the server’s on-disk log

size from 56.5 MB to 56.7 MB, a 0.3% increase. The

amount of information transmitted to the auditors (the five

clients) changed from 12.5 MB to 13.1 MB, a 4.2% in-

crease. The difference occurs because the on-disk log con-

tains additional information (such as checkpoints) which

is not normally sent to the auditors. These overheads are

small both in relative and absolute terms, which suggests

that CSAR is practical.

9 Variants of our approach

In designing CSAR, we have made some non-obvious de-

sign choices. To highlight the importance of these choices,

we now describe some possible variations of CSAR, and

we point out the challenges that would have to be over-

come to make them work.

9.1 Different choice of the trapdoor permutation

The most obvious variation is to use a different trapdoor

one-way permutation. Although this is possible, there are

a few caveats. First, our optimization technique from Sec-

tion 6.2 is specific to 3RSA. Implementations using alter-

native permutations hence are likely to be much less ef-

ficient. Furthermore, if one replaces 3RSA by another

function f , the security of CSAR will only be guaranteed

if f , in addition to being one-way, satisfies the follow-

ing three properties (which are derived from the security

proof). First, one must be able to efficiently prove that f
is indeed a permutation (this is done in CSAR by send-

ing the values qµ). Second, one must be able to efficiently

convert a random bitstring h into an element of the do-

main of f (we did this by computing v mod n). Also, it

must be efficiently possible to recognize if a given value

is indeed in the domain of f (we did this by checking

whether si ∈ {0, . . . , n − 1}). The importance of the

last point is best illustrated by an example. Consider the

function fn := x2 mod n. If n is a so-called Blum in-

teger, then fn is a permutation on the quadratic residues

modulo n (see, e.g., [14, App. A.2.4]). However, for any

given quadratic residue si there always exist si+1 6= s′i+1

with fn(si+1) = fn(s′i+1) = si where s′i+1 is not a

quadratic residue. This does not contradict the property

that fn is a permutation on the quadratic residues, but it

still breaks the security of CSAR: in each step a malicious

node can choose between two values, and since no efficient

way is known to tell quadratic residues from quadratic non-

residues, the auditors could not detect an incorrect choice.

11

9.2 Applying a PRG to ri

In highly randomness-consuming protocols, one might be

tempted to perform the following optimization: one gener-

ates a new ri only when the previous ri has been revealed

(e.g., since it was contained in an audit log). Then the ran-

domness x
(i)
1 , x

(i)
2 , . . . of the protocol is generated with a

classical pseudo-random generator from ri. In this case,

however, a malicious node can mount the following attack:

before performing some action that requires randomness,

the node first checks what the next value x
(i)
j would be. If

the node does not like this value, the node delays that ac-

tion until the next audit. After that audit, a new seed ri+1

is used and the next value is x
(i+1)
1 , which possibly suits

the node better. Although the effect of this attack may be

small when audits are not too frequent, the possibility of

such an attack is still present. Such an attack may have

important consequences in protocols in which a single ran-

dom value is critical, e.g., if the value determines whether

a given sum of money will be transferred or not.

9.3 Using interaction

One of the limitations of CSAR is that malicious nodes can

predict their own randomness. If the randomness is gener-

ated non-interactively, this is necessarily the case, since a

node can always compute that randomness ahead of time.

One way to circumvent this problem would be to use in-

teractivity: for each random value, P performs a coin-toss

with the entities in ω(P) (in this case one could also get

rid of the random oracle). Although a coin-toss is a rather

efficient protocol, it obviously incurs large communication

costs (but this might still be feasible for protocols that only

rarely need randomness). Another solution is to include

the incoming messages in the generation of the random-

ness, i.e., ri := H(P, i, si, m) where m is the history of

communication. Then even a malicious node can only pre-

dict its own randomness as far as it can predict incoming

communication. However, this approach is flawed: if two

malicious nodes collude, they can mutually influence their

randomness by adaptively choosing the messages they ex-

change.

9.4 Using zero­knowledge

The second limitation of CSAR (which is already present

in the original PeerReview) is that the auditors learn the

state of a node. One can solve this problem by letting a

node send only a hash of its log and then prove that the

hash contains a valid log using a zero-knowledge proof.

Although this is possible in theory, general purpose zero-

knowledge proofs are extremely inefficient. Even the most

efficient zero-knowledge proofs either target very specific

number theoretic problems or need to perform a proof

step for each elementary computation step in the proto-

col. Hence the incurred computational and communication

costs would be prohibitive for all but very specific applica-

tions.

10 Conclusion

In this paper, we have described CSAR, a technique that

lends accountability to systems that use randomized pro-

tocols. The key contribution is a new technique for gen-

erating cryptographically strong, accountable randomness,

that is, a pseudo-random sequence that comes with a proof

that the elements of the sequence have been correctly gen-

erated, while ensuring that the auditors are unable to learn

anything that would make the node’s future actions pre-

dictable. We have applied CSAR to a simple web server

that uses random sampling for billing purposes. Our ex-

periments indicate that the computational cost of CSAR

is low and that the approach is practical: on current hard-

ware and with a 1024-bit RSA modulus, a random number

can be generated in less than 20µs and verified in less than
10µs. We have additionally shown that the CSAR’s stor-

age and bandwidth costs are low both in relative and in

absolute terms.

Acknowledgments

We thank the anonymous reviewers for their helpful com-

ments.

References

[1] M. Backes, C. Cachin, and A. Oprea. Secure key-updating

for lazy revocation. In European Symposium on Research

in Computer Security (ESORICS), volume 4189 of Lecture

Notes in Computer Science. Springer, 2006.

[2] M. Backes, B. Pfitzmann, and M. Waidner. A general com-

position theorem for secure reactive systems. In Proc. 1st

Theory of Cryptography Conference (TCC), volume 2951

of Lecture Notes in Computer Science, pages 336–354.

Springer, 2004.

[3] M. Backes, B. Pfitzmann, and M. Waidner. Secure

asynchronous reactive systems. IACR Cryptology ePrint

Archive 2004/082, Mar. 2004. To appear in Information

and Computation.

[4] N. Baric and B. Pfitzmann. Collision-free accumulators

and fail-stop signature schemes without trees. Advances in

Cryptology – EUROCRYPT, pages 480–94, 1997.

[5] M. Bellare and P. Rogaway. Random oracles are practi-

cal: A paradigm for designing efficient protocols. In 1st

ACM Conference on Computer and Communications Secu-

rity, Proceedings of CCS 1993, pages 62–73. ACM Press,

12

1993. Full version online available at http://www.cs.

ucsd.edu/users/mihir/papers/ro.ps.

[6] M. Bellare and P. Rogaway. Optimal asymmetric

encryption—how to encrypt with RSA. In A. de San-

tis, editor, Advances in Cryptology, Proceedings of EURO-

CRYPT ’94, volume 950 of Lecture Notes in Computer Sci-

ence, pages 92–111. Springer-Verlag, 1995. Extended ver-

sion online available at http://www.cs.ucsd.edu/

users/mihir/papers/oae.ps.

[7] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. M.

Voelker. TotalRecall: System support for automated avail-

ability management. In Proceedings of the ACM/USENIX

Symposium on Networked Systems Design and Implemen-

tation (NSDI’04), San Francisco, CA, Mar 2004.

[8] R. Canetti. Universally composable security: A new

paradigm for cryptographic protocols. In Proc. 42nd IEEE

Symposium on Foundations of Computer Science (FOCS),

pages 136–145, 2001. Extended version in Cryptol-

ogy ePrint Archive, Report 2000/67, http://eprint.

iacr.org/.

[9] R. Canetti, O. Goldreich, and S. Halevi. The random oracle

methodology, revisited. In Thirtieth Annual ACM Sympo-

sium on Theory of Computing, Proceedings of STOC 1998,

pages 209–218. ACM Press, 1998. Preliminary version,

extended version online available at http://eprint.

iacr.org/1998/011.ps.

[10] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-

stron. Scalable application-level anycast for highly dy-

namic groups. In NGC 2003, Sep 2003.

[11] M. Chase and A. Lysyanskaya. Simulatable VRFs with

applications to multi-theorem NIZK. In A. Menezes, edi-

tor, CRYPTO, volume 4622 of Lecture Notes in Computer

Science, pages 303–322. Springer, 2007.

[12] B. Claise. RFC 3954: Cisco systems NetFlow ser-

vices export version 9. http://www.ietf.org/rfc/

rfc3954.txt, Oct 2004.

[13] R. Dingledine, M. J. Freedman, and D. Molnar. Peer-to-

Peer: Harnessing the Power of Disruptive Technologies,

chapter Accountability. O’Reilly and Associates, 2001.

[14] O. Goldreich. Foundations of Cryptography – Volume 1

(Basic Tools). Cambridge University Press, Aug. 2001. Pre-

vious version online available at http://www.wisdom.

weizmann.ac.il/~oded/frag.html.

[15] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerRe-

view: Practical accountability for distributed systems. In

Proceedings of the 21st ACM Symposium on Operating

Systems Principles (SOSP’07), pages 175–188. ACM, Oct

2007.

[16] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and

K. Fu. Plutus: Scalable secure file sharing on untrusted

storage. In Proc. 2nd USENIX Conference on File and Stor-

age Technologies (FAST), 2003.

[17] D. Knuth. The art of computer programming. 2. Seminu-

merical algorithms. Addison-Wesley, 2 edition, 1969.

[18] L. Lamport. Password authentication with insecure com-

munication. Commun. ACM, 24(11):770–772, 1981.

[19] B. W. Lampson. Computer security in the real world. In

Proc. Annual Computer Security Applications Conference,

Dec 2000.

[20] P. Maniatis, D. S. H. Rosenthal, M. Roussopoulos,

M. Baker, T. Giuli, and Y. Muliadi. Preserving peer repli-

cas by rate-limited sampled voting. In Proceedings of the

19th ACM Symposium on Operating Systems Principles

(SOSP’03), pages 44–59. ACM, 2003.

[21] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and

A. Ganesh. Peer counting and sampling in overlay net-

works: random walk methods. In Proceedings of the

twenty-fifth annual ACM symposium on Principles of dis-

tributed computing (PODC’06), pages 123–132. ACM,

2006.

[22] S. Micali, M. Rabin, and S. Vadhan. Verifiable random

functions. In Proceedings of the 40th Annual Symposium

on the Foundations of Computer Science, pages 120–130,

New York, NY, October 1999. IEEE.

[23] N. Michalakis, R. Soulé, and R. Grimm. Ensuring content

integrity for untrusted peer-to-peer content distribution net-

works. In Proceedings of the 4th USENIX Symposium on

Networked Systems Design and Implementation (NSDI’07),

Apr 2007.

[24] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why

do internet services fail, and what can be done about it?

In Proceedings of the 4th USENIX Symposium on Internet

Technologies and Systems (USITS’03), Mar 2003.

[25] PeerReview project homepage. http://peerreview.

mpi-sws.org/.

[26] RSA Laboratories. PKCS #1: RSA Cryptography

Standard, Version 2.1, 2002. Online available at

ftp://ftp.rsasecurity.com/pub/pkcs/

pkcs-1/pkcs-1v2-1.pdf.

[27] A. Schönhage and V. Strassen. Schnelle Multiplikation

großer Zahlen. Computing, 7(3):281–292, 1971.

[28] A. R. Yumerefendi and J. S. Chase. Trust but verify: Ac-

countability for Internet services. In ACM SIGOPS Euro-

pean Workshop, Sep 2004.

[29] A. R. Yumerefendi and J. S. Chase. The role of account-

ability in dependable distributed systems. In Proceedings

of the First Workshop on Hot Topics in System Dependabil-

ity (HotDep’05), Jun 2005.

[30] A. R. Yumerefendi and J. S. Chase. Strong accountability

for network storage. In Proceedings of the 5th USENIX

Conference on File and Storage Technologies (FAST’07),

Feb 2007.

A Security Proof

Theorem 2 Let a setΠ of nodes be given of which an arbi-

trary number may be malicious. Then for any polynomial

time machine A there exists a polynomial time machine S
such that for any environment Z that does not access the

random oracle H the following holds: Let PR denote the

probability that Z outputs 1 after running together with A
and real machines MP for all P ∈ Π. Let PI denote the

probability that Z outputs 1 after running together with S

13

and ideal machines M̃P for all P ∈ Π. Then

|PR − PI |

≤ (3
7 + 4

7 · 2l2−t3l1)t2 · Q + (2−l2+1 + 2l2−t3l1) · Qt1

+ 2l2−t3l1 · Q2 · #Π

+ Q · #Π · ε3RSA(l2, O(T + Qt3l1+

(Q + #Πt2)l
2
2 log l2 log log l2))

Here Q denotes the number of queries performed by Z
and A (both to the randomness generation protocol and

to H), T denotes an upper bound on the size of the circuits

describing Z and A (i.e., roughly the running time) and

#Π is the number of nodes.

In particular, if l1, l2, t1, t2, t3, #Π are polynomially

bounded in some security parameter k, and l2, t2, (t3l1 −
l2) ∈ Ω(k), and the 3RSA assumption holds, then |PR −
PI | is negligible.

A.1 Proof plan

To prove theorem 2, we proceed in three main steps. First,

we define a variant of the real execution where the random

oracle H is replaced by a simulation H̃ which internally

works very differently from H but is designed to still give

(almost) uniformly distributed outputs H̃(x). We call the

execution using H̃ the hybrid execution (since it is a mix

between the real and the ideal execution). Then several

events are defined that represent various possible failures

or imperfections of the simulation H̃ and the probability

PrBAD of these events is then shown to be negligible. It is

then shown that unless these events occur, the outputs of H̃
have the same distribution as those of H . We then proceed

to construct the simulator S which is strongly simplified

by the fact that the oracle H̃ already computes all values

necessary for the execution of S. We then show that unless

one of the above-mentioned events occurs, the hybrid and

the ideal execution have the same distribution. Concluding,

we have that the distribution of the output of Z in the real

and the ideal execution differ only by PrBAD .

Before we present the actual proof, we need the follow-

ing auxiliary lemma:

Lemma 1 Let n ∈ N be an integer of length l2. Let

ly ≥ l2. If fn(x) := x3 mod n is not a permutation on

{0, . . . , n − 1}, then for random y ∈ {0, 1}ly the proba-

bility that some value q exists with fn(q) ≡ y mod n is

bounded from above by 3
7 + 4

7 · 2l2−ly .

Proof: For n ≤ 2 the function fn is always a permuta-

tion. Thus assume n ≥ 3. Since fn is a permutation iff

3 ∤ ϕ(n) (since exactly in this case 3 has a multiplicative

inverse modulo ϕ(n)) we know that 3 | ϕ(n). Thus there
is a prime p and an e ∈ N such that pe | n, pe+1 ∤ n and

3 | ϕ(pe). We distinguish two cases, p = 3 and p 6= 3. If
p = 3, we have that ϕ(pe) = 2 ·3e−1, thus e > 2 and 9 | n.
Thus if q3 ≡ y mod n, then q3 ≡ y mod 9. The only

solutions to this equation are q ∈ {0, 1, 8} mod 9. Thus,
for random y mod n (and thus also random y mod 9), we
have that there exists a q with q3 ≡ y mod n with prob-

ability 1
3 ≤ 3

7 . Now we consider the case p 6= 3. Since

ϕ(2e) = 2e−1 and ϕ(5e) = 4 · 5e−1, by 3 | ϕ(pe) we have
p ≥ 7. Further, since 3 ∤ p and 3 | ϕ(pe) = (p − 1)pe−1,

we have that 3 | p − 1. The operation fp : x 7→ x3 mod p

corresponds to the function f̃p : x̃ 7→ 3x̃ mod p − 1 (be-

cause Z×

p
∼= Zϕ(p) = Zp−1 where Z×

p is the multiplica-

tive group of Zp). Since f̃p(Zp−1) ∼= Z p−1

3

, the number

of ỹ ∈ Zp−1 that have a preimage under f̃p is at most
p−1
3 . Thus the number of y ∈ Z×

p with a preimage un-

der fp is also at most p−1
3 , and the number of y ∈ Zp

with a preimage under fp is at most N := p−1
3 + 1 (sinceZp \ Z×

p = {0}). Thus for random y mod p a preimage

under fp exists with probability at most N
p
, and thus a ran-

dom y mod n has a preimage under fn with probability at

most N
p
. Since p ≥ 7 we have N

p
= p+2

3p
≤ 7+2

3·7 = 3
7 .

So altogether, when choosing y such that y mod n is uni-

formly distributed on {0, . . . , n − 1}, the probability that

y mod n has a preimage under fn is at most 3
7 . Fix u, v

with un + v = 2ly and v ∈ {0, . . . , n − 1}. Since

2ly ≥ n we have u ≥ 1. Let y be randomly chosen from

{0, 1}ly . Then with probabilityP := un
un+v

= 1− v
un+v

≥

1 − 2l2−ly we have that y ∈ {0, . . . , un} := M . Under

the condition that y ∈ M we have that y mod n is uni-

formly distributed on {0, . . . , n − 1}. Thus the probabil-

ity that y mod n has a preimage under fn is bounded by
3
7 ·P +(1−P) ≤ 3

7 ·(1−2l2−ly)+2l2−ly = 3
7 + 4

7 ·2
l2−ly .

�

A.2 Simulating the random oracle

Here and for the rest of the proof, for an integer i, let m
and j always be integers such that mt1 + j = i and j ∈
{1, . . . , t1}.

In the first step, we replace the random oracle H in the

real execution by a lazily sampled function H̃. The real

execution with H̃ we call the hybrid execution. The oracle

H̃ acts as follows:

1. First, for each node P an infinite sequence of random

values rP
i ∈ {0, 1}l1 is randomly chosen. Further,

gP
m := ⊥ for all m ∈ N and all nodes P . Initially

set H̃(x) := ⊥ for all x. Let G := ∅ and N := ∅.

When we say “sample H̃(x)” wemean “if H̃(x) = ⊥,

choose a random h ∈ {0, 1}l1 and set H̃(x) := h”.
2. Let sP denote the value s chosen by node P . Until

sP has been chosen, let sP := ⊥. Let nP denote the

public key n chosen by node P and let qP
1 , . . . , qP

n be

14

the values q1, . . . , qt2 output by P . As soon as nP has

been output, sample H̃(pk, µ, nP) for µ = 1, . . . , t2.
Check whether fnP (qµ) = H̃(pk, µ, nP) for all µ =
1, . . . , t2. If so, set N := N ∪ {nP }.

3. As soon as sP is determined, sample

H̃(P, start, sP), and set sP
0 := H̃(P, start, sP).

Then sample H̃(µ, P, 0, sP
0) for µ = 1, . . . , t2. Then

set gP
0 := H̃∗(P, 0, sP

0) and G := G ∪ {(P, 0)}.
4. Upon a query H̃(x) do the following:

• Check whether x = (P, i, x̃) or x = (µ, P, i, x̃)
such that the following holds: (i) i is an inte-

ger and i ≥ 1, (ii) P is a node, (iii) nP ∈ N ,

(iv) (P, m) ∈ G, (v) x̃ ∈ {0, . . . , nP − 1},
(vi) f j

nP (x̃) ≡ gP
m mod nP ,

• If this check succeeds, set H̃(P, i, x̃) :=
rP
i . Further, if additionally j = t1, sample

H̃(µ, P, i, x̃) for µ = 1, . . . , t2 and set g
P
m+1 :=

H̃∗(P, i, x̃) and G := G ∪ {(P, m)}.
• Finally, sample H̃(x) and return H̃(x).6

A.3 Events

We define the following events that may occur in the hy-

brid execution:

Event GCONFLICT: Queries H̃(x1), H̃(x2) are per-

formed with x1 = (P, i, x̃) or x1 = (µ, P, i, x̃) and

with x2 = (P, i, x̃) or x2 = (µ′, P, i, x̃) (note that P ,

i, and x̃ are the same in both queries) such that during

the first query we have (P, m) /∈ G and during the sec-

ond query we have (P, m) ∈ G, nP ∈ N and f j

nP (x̃) ≡
gP

m mod nP .

Event REASSIGN: H̃(x) is assigned a value y although

it was already assigned some value y′ /∈ {y,⊥}.
Event ALIAS: In two queries to H̃ , two triples (P, i, x̃)

and (P, i, x̃′) with x̃ 6= x̃′ (but with the same P, i) pass the
check in Step 4.

Event NONINJECTIVE: There exists a node P such that

nP ∈ N and fnP is not a permutation on {0, . . . , nP − 1}.
Event PREDICT: In some query to H̃ , a triple (P, i, x̃)

passes the check in Step 4 where P is an honest node and

the i-th randomness query to P by the environment has

not yet been performed. (Here, if the query to H̃ occurs

during the i-th randomness query to P , we consider the

i-th randomness query as already performed.)

Event WRONGPROOF: An honest party outputs a triple

(r̃i, πi, bi) in a randomness query with bi 6= 1.
Event WRONGRANDOM: A party outputs a triple

(r̃i, πi, bi) with r̃i 6= ri and bi = 1.
Event BAD: One of the events GCONFLICT,

REASSIGN, ALIAS, NONINJECTIVE, PREDICT,

WRONGPROOF, or WRONGRANDOM occurs.

6Note that sampling H̃(x) only has an effect if H̃(x) has not been

assigned in the preceding step.

A.4 Event probabilities

We will now bound the probabilities of the various events

defined above.

First, we bound the probability of NONINJECTIVE. A

value n is in N only if H̃∗(pk, µ, n) has a preimage mod-

ulo n under fn for all µ ∈ {1, . . . , t2}. Since the values

hµ := H̃∗(pk, µ, n) are uniformly chosen from {0, 1}t3l1

with t3l1 ≥ l2 ≥ |n| (and n cannot depend on the hµ since

n is given as argument to H̃∗), we have by lemma 1 that

if fn is not a permutation, the probability that all hµ have

a preimage under fn is at most (3
7 + 4

7 · 2l2−t3l1)t2 . Thus,

since at most Q different values n can be queried, the prob-

ability of NONINJECTIVE is at most (3
7 + 4

7 · 2
l2−t3l1)t2Q.

Next, we bound the probability of GCONFLICT ∧
¬NONINJECTIVE. Assume that GCONFLICT ∧
¬NONINJECTIVE occurs. Then in the first query

H̃(x1), the value gP
m has not yet been chosen. Fur-

ther, in the second query we have that nP ∈ N , thus

fnP is a permutation on {0, . . . , nP − 1} (since we

assume ¬NONINJECTIVE). Further, in the second

query we have that f j
nP

(x̃) ≡ gP
m mod nP and thus

x̃ ≡ f−j
nP

(gP
m) mod nP where gP

m is randomly chosen

after x̃ (because x̃ is already used in the first query). Since

gP
m is uniformly distributed on {0, 1}t3l1 , we have that

gP
m mod nP is uniformly distributed on {0, . . . , nP − 1}
under the condition that gP

m < 2t3l1 − (2t3l1 mod n). The
probability that gP

m ≥ 2t3l1 − (2t3l1 mod n) is at most
n

2t3l1
≤ 2l2−t3l1 , thus the statistical distance δ between the

distribution of gP
m mod nP and the uniform distribution

on {0, . . . , nP − 1} is at most 2l2−t3l1 . Since f−j

nP is a

permutation, the same holds for f−j

nP (gP
m) mod nP . Thus

the probability that a random gP
m fulfills x̃ ≡ f j

nP (gP
m)

is at most 1
n

+ δ ≤ 2−l2+1 + 2l2−t3l1 . Since at most

Q different queries H̃(x1) can be performed in an

execution, and j can take only t1 different values (we

have j ∈ {1, . . . , t1}), we have that the probability

that GCONFLICT ∧ ¬NONINJECTIVE occurs is at most

(2−l2+1 + 2l2−t3l1)Qt1.

Now, we show that REASSIGN ∧ ¬GCONFLICT does

not occur. By our definition of sampling, sampling H̃(x)
for some x can never reassign H̃(x). Thus the only place

where some H̃(x) could be reassigned is in Step 4, namely

the assignment H̃(P, i, x̃) := rP
i . However, this assign-

ment can only occur if (P, m) ∈ G, nP ∈ N and

f j

nP (x̃) ≡ gP
m mod nP . Further, for this assignment to

be a reassignment, H̃(P, i, x̃) needs to have already been

assigned a different value, i.e., H̃(P, i, x̃) needs to have

been sampled in an earlier query. For this, in the earlier

query (P, m) /∈ G needs to hold (otherwise the check in

Step 4 would have been passed). Thus REASSIGN implies

GCONFLICT, and therefore REASSIGN ∧ ¬GCONFLICT

15

does not occur.

Now we show that ALIAS∧¬NONINJECTIVE never oc-

curs. ALIAS occurs if two triples (P, i, x̃) and (P, i, x̃′)
with x̃ 6= x̃′ pass the test in Step 4. This implies

that nP ∈ N , that x̃, x̃′ ∈ {0, . . . , nP − 1}, and that

f j

nP (x̃) = gP
m = f j

nP (x̃′). This is only possible if

f j

nP is not a permutation on {0, . . . , nP − 1}. However,

this would imply NONINJECTIVE since nP ∈ N . Thus

ALIAS ∧ ¬NONINJECTIVE never occurs.

We now show that event WRONGRANDOM ∧
¬REASSIGN never occurs. Both honest

and malicious machines MP set bi :=
Verify(P, nP , sP , r̃P

i , qP
1 , . . . , qP

t2
, sP

1 , . . . , sP
i) where

(r̃P
i , sP

i) are the values chosen by the adversary in the

i-th randomness query to P . Assume that no H̃(x) is

ever reassigned a different value, i.e., that REASSIGN

does not occur. A comparison of the definition of Verify

and Step 4 of the simulation of H̃ then reveals that if

Verify returns bi = 1, then the simulation of H̃ sets

H̃(P, i, sP
i) to rP

i . Since Verify only returns bi = 1 if

r̃P
i = H̃(P, i, sP

i), it follows that if bi = 1 then r̃P
i = rP

i .

Thus WRONGRANDOM ∧ ¬REASSIGN never occurs.

We now show that WRONGPROOF ∧¬REASSIGN does

not occur. By construction of the protocol, as long as

the oracle H̃ always returns the same value on the same

input (i.e., REASSIGN does not occur), all checks in

the definition of Verify succeed, thus WRONGPROOF ∧
¬REASSIGN does not occur.

A.5 Bounding the probability of PREDICT

Now we bound the probability of PREDICT∧¬REASSIGN.

This is actually the only place in this proof where the one-

wayness of fn comes into play. Let γ be the probability

that PREDICT ∧ ¬REASSIGN occurs. Then, for a random

honest node P̂ and a random integer ı̂ ∈ {1, . . . , Q}, the
probability that PREDICT ∧¬REASSIGN occurs with P =
P̂ and i = ı̂ is at least γ

Q#Π . We can then transform the

whole system consisting of nodes, environment, adversary,

and H̃ into one machine Sim that performs the following:

• First, it chooses a random RSA modulus n̂ of length

l2 with 3 ∤ ϕ(n) and a random ŷ ∈ {0, . . . , n − 1}.
• Then it chooses a random honest node P̂ and an

integer ı̂ ∈ {1, . . . , Q}. It computes m̂ and ̂ ∈
{1, . . . , t1} such that ı̂ = m̂t1 + ̂.

• It simulates the hybrid execution with the following

modifications:

(i) When P̂ would choose the RSA modulus nP̂ , it

sets instead nP̂ := n̂.
(ii) When H∗(pk, µ, x̃) is to be sampled,7 choose

some random q ∈ {0, . . . , n̂ − 1} and choose a

7When we say that H∗(x) is to be sampled, we mean that H(k, x)
is to be sampled for some k ∈ {1, . . . , t3}. Similarly, when assigning

random ĥµ ∈ {0, 1}t3l1 with ĥµ ≡ fn̂(q) mod

n̂. Store (q, ĥµ) in some list L.

(iii) When in Step 4 of the simulation of H̃ , the value

H̃∗(P̂ , i, x̃) is to be sampled, do not choose

these values randomly but choose a random

ĝm ∈ {0, 1}t3l1 with ĝm ≡ g mod n̂ where

g is chosen as follows: If m = m̂, then g :=
f ̂−1

n̂ (ŷ), and if m 6= m̂, choose a random

y′ ∈ {0, . . . , n−1} and set g := f t1
n̂ (y′). In this

computation, on each invocation of fn̂(a) = b,
store (a, b) in the list L. Then assign ĝm to

H̃∗(P̂ , i, x̃).
(iv) When M

P̂
computes f−1

n̂ (b) for some x, search
for some (a′, b′) with b = b′ in L and return a.
Only if no such (a′, b′) exists, use the secret key
corresponding to n̂ to compute f−1

n̂ (b).

Note that in this simulation, nP̂ is chosen with the same

distribution as in the hybrid execution. Further, the com-

putation of f−1
n̂ by M

P̂
is performed differently, but the

result is the same as in the hybrid execution since if

(a′, b′) ∈ L then b′ = fn̂(a′) and thus a′ = f−1
n̂ (b′) (note

that since n̂ is chosen honestly, fn̂ is a permutation). Now

consider the choice of ĝm. These values are not chosen

uniformly from {0, 1}t3l1 , but instead they are chosen uni-

formly under the precondition that ĝm ≡ g mod n̂. The

value g is chosen uniformly from {0, . . . , n̂ − 1} (since

fn̂ is a permutation, and y′ is each time a fresh random

value and ŷ is only used for ĝm̂). Thus ĝm is a fresh ran-

dom value with a distribution that has a statistical distance

δ from the uniform distribution with δ ≤ 2t3l1 mod n̂
2t3l1

≤
n̂

2t3l1
≤ 2l2−t3l1 . Analogous reasoning holds for ĥµ. Since

at most Q values ĝm and ĥµ are chosen, the overall er-

ror introduced at most is 2l2−t3l1 · Q. Thus the probabil-

ity that PREDICT ∧ ¬REASSIGN occurs in the execution

simulated by Sim is at least γ
Q#Π − 2l2−t3l1 · Q. The

machine M
P̂
computes f−1

n̂ only in two situations. First,

for computing qµ = f−1
n̂ (H̃∗(pk, µ, n̂)) and second for

computing si = f−j
n̂ (H̃∗(P, mt, smt)). In the first case,

after querying h := H̃∗(pk, µ, n̂), a pair (q, ĥµ) with

ĥµ = h is contained in L. Thus f−1
n̂ is computed with-

out accessing the secret key. In the second case, when

computing si, as long as REASSIGN does not occur, the

value gm := H̃∗(P, mt, smt) is chosen in Step (iii) as ĝm.

In this case, for i < ı̂ (and thus m < m̂ or j < ̂), we
have that (f−j

n̂ (ĝm), f−j+1
n̂ (ĝm)) ∈ L and si is computed

without accessing the secret key of M
P̂
. Thus M

P̂
does

not use its secret key before the i-th randomness query un-

less REASSIGN occurs. If PREDICT occurs with P = P̂
and i = ı̂, we have that a triple (P̂ , ı̂, x̃) is accepted in

some value v1‖ . . . vt3
to H∗(x), we assign vk to H∗(k, x). We use

this somewhat sloppy notation for readability.

16

Step 4 of the simulation of H̃ before the i-th randomness

query of M
P̂
. This implies that x̃ = f−̂

n̂ (ĝm̂) = x̃ =

f−̂
n̂ (f ̂−1

n̂ (ĝm̂)) = f−1
n̂ (ŷ). So, if PREDICT∧¬REASSIGN,

Sim finds a preimage of ŷ under fn̂ without accessing the

secret key corresponding to n if PREDICT ∧ ¬REASSIGN

occurswith P = P̂ and i = ı̂. Since the probability for this
is at least γ

Q#Π − 2l2−t3l1 · Q as seen above, by definition

of ε3RSA we have that γ
Q#Π − 2l2−t3l1 ·Q ≤ ε3RSA(l2, S)

where S is the size of the circuit describing the machine

Sim. It can be easily verified Sim can be described by a

circuit of size O(T + Qt3l1 + (Q +#Πt2)X) where X is

the size of a circuit that performs an exponentiation mod-

ulo a number n of length l2. By [27] and [17, p. 295] we

have X ∈ O(l22 log l2 log log l2). Thus the probability γ
that PREDICT ∧ ¬REASSIGN occurs is at most Q · #Π ·
ε3RSA(l2, O(T +Qt3l1+(Q+#Πt2)l

2
2 log l2 log log l2))+

2l2−t3l1 · Q2 · #Π.

A.6 The probability of BAD

The event BAD is equivalent to NONINJECTIVE ∨
(GCONFLICT ∧ ¬NONINJECTIVE) ∨ (REASSIGN ∧
¬GCONFLICT) ∨ (ALIAS ∧ ¬NONINJECTIVE) ∨
(WRONGRANDOM ∧ ¬REASSIGN) ∨ (WRONGPROOF ∧
¬REASSIGN) ∨ (PREDICT ∧ ¬REASSIGN). Combining

the above bounds on the probabilities of the various events,

we get that BAD occurs with probability at most

PrBAD

:= (3
7 + 4

7 · 2l2−t3l1)t2 · Q + (2−l2+1 + 2l2−t3l1) · Qt1

+ Q · #Π · ε3RSA(l2, O(T + Qt3l1+

(Q + #Πt2)l
2
2 log l2 log log l2))

+ 2l2−t3l1 · Q2 · #Π

A.7 Faithfulness of the oracle simulation

We will now show that the simulation of H̃ as described

above is a faithful simulation of the random oracle H .

More exactly, we show that unless REASSIGN or ALIAS

occurs we have that when H̃ is queried twice with the same

value it returns the same image, and when H̃ is queried

with a value x that has not yet been queried, a fresh ran-

dom value from {0, 1}l1 is returned.8 Since the simulated

H̃ upon query x always returns H̃(x) (where the partial

function H̃ is possibly modified first), H̃ will always re-

turn the same values on the same queries unless REASSIGN

occurs.

To see that for a value x that has not yet been queried,

a fresh random value is returned, note that there are only

8By fresh we mean that this value is uniformly distributed and inde-

pendent of all other values returned so far.

two possibilities how H̃(x) gets assigned a value. First,

H̃(x) is sampled. In this case, by definition H̃(x) is as-

signed a fresh value. Or second, H̃(P, i, x̃) is assigned

rP
i . Since each rP

i is an independently chosen random

value, and that value is never accessed until rP
i is assigned,

H̃(P, i, x̃) is assigned only fresh random values unless

some rP
i is assigned to two different H̃(P, i, x̃). This again

only happens if for two triples (P, i, x̃) and (P, i, x̃′) with
x̃ 6= x̃′ pass the check in Step 4 (in different queries), i.e.,

if ALIAS occurs. Thus unless REASSIGN or ALIAS occurs,

H̃ is a faithful simulation of a random oracle.

A.8 Constructing the simulator

For a given adversary A that runs with the real machines

MP , we now construct the simulator S that runs with the

ideal machines M̃P in the ideal execution. This simula-

tor S does the following:

(i) It simulates the random oracle H̃ as described above.

However, it does not choose the values rP
i on its own

but uses the values ri chosen by machine M̃P . By

definition, malicious machines make the ri accessi-

ble to the simulator. If M̃P is honest, and a value ri

is required that M̃P has not yet sent to the simulator,

the simulator aborts.

(ii) It simulates an instance of the adversaryA. Any com-

munication from the environment to the simulator is

passed to the simulated adversary A.

(iii) When an ideal honest machine M̃P requests

a tuple (n, q1, . . . , qt2), the simulator computes

(n, q1, . . . , qt2) according to the protocol (i.e., n is

an RSA modulus and qµ := f−1
n (H̃(pk, µ, n))).

(iv) When an ideal malicious machine M̃p requests a tu-

ple (n, q1, . . . , qt2) that request is forwarded to the

adversary A.

(v) When the machine M̃P passes the value s to the sim-

ulator, that value is forwarded to the adversary.

(vi) When the malicious machine M̃P requests

a triple (r̃i, si, bi), the simulator requests

(r̃i, si) from the adversary A, and computes

bi := Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si)
where n, s, qµ, sµ are the respective values output by

M̃P . Then the simulator returns (r̃i, si, bi) to M̃P .

(vii) When the honest machine M̃P requests a triple

(r̃i, si, bi), the simulator sets bi := 1 and computes

(r̃i, si) according to the honest protocol (i.e., r̃i :=
H̃(P, i, sP

i) si is computed recursively as f−1
n (si−1)

or f−1
n (H̃∗(P, i − 1, si−1)) or H̃∗(P, start, s), re-

spectively). Note that the simulator is able to com-

pute f−1
n for honest machines M̃P since the simula-

tor has chosen the modulus n for M̃P himself.

17

A.9 Faithfulness of the simulation

We will now show that the view of the environment is

identical in an execution of the adversary A and the real

machines MP but with simulated H̃ (the hybrid execu-

tion) and in an execution of the simulator S and the

ideal machines M̃P (the ideal execution) unless PREDICT,

WRONGRANDOM or WRONGPROOF occurs. Steps (i)–

(v) are a direct simulation of the corresponding actions of

the real machines and the adversary unless the simulator

aborts in Step (i). The latter only happens when a value

rP
i is required that has not yet been given by the honest

M̃P to the simulator, i.e., if PREDICT occurs.

Consider Step (vi). In the hybrid execution the

malicious machine MP returns the triple (r̃i, si, bi)
where bi := Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si) and
(r̃i, si) are the values chosen by the adversary A. In the

ideal execution, the malicious machine M̃P returns the

triple (r′i, si, bi) where si is the value chosen by A and

bi is computed as in the hybrid execution. Further we have

r′i = r̃i if bi = 0 and r′i = ri if bi = 1 (here ri is the

random value chosen by M̃P itself). Thus the triples re-

turned in the hybrid and the ideal execution are equal un-

less ri 6= r̃i∧bi = 1, i.e., unless WRONGRANDOM occurs.

Consider Step (vii). In the hybrid execution the hon-

est machine MP returns the triple (r̃i, si, bi) where (r̃i, si)
are computed according to the honest protocol and bi :=
Verify(P, n, s, r̃i, q1, . . . , qt2 , s1, . . . , si). In the ideal exe-
cution the honest machine M̃P returns the triple (ri, si, 1)
(here ri is the random value chosen by M̃P itself). Thus

the triples returned in the hybrid and the ideal execution

are equal unless ri 6= r̃i ∨ bi 6= 1. However, ri 6=
r̃i ∨ bi 6= 1 implies WRONGPROOF ∨ WRONGRANDOM,

so the triples returned in the hybrid and the ideal execution

are equal unless WRONGPROOF or WRONGRANDOM oc-

curs.

So together, we have that the view of the environment

is identical in the hybrid and the ideal execution unless

PREDICT, WRONGRANDOM, or WRONGPROOF occurs.

A.10 Putting the pieces together

We have seen so far that the real and the hybrid execution

lead to the same outputs of H or H̃ , respectively, unless

BAD occurs. Thus in particular Z’s output is the same un-

less BAD occurs. Furthermore, we have shown the same

for the hybrid and the ideal execution. Therefore the out-

put of Z is the same in the real and the ideal execution

unless BAD occurs. Thus |PR − PI | ≤ PrBAD . Using the

bound for PrBAD derived above, theorem 2 follows. �

18

