
The Fault Detection Problem

Andreas Haeberlen1 and Petr Kuznetsov2

1 Max Planck Institute for Software Systems (MPI-SWS)
2 TU Berlin / Deutsche Telekom Laboratories

Abstract. One of the most important challenges in distributed com-
puting is ensuring that services are correct and available despite faults.
Recently it has been argued that fault detection can be factored out from
computation, and that a generic fault detection service can be a useful
abstraction for building distributed systems. However, while fault detec-
tion has been extensively studied for crash faults, little is known about
detecting more general kinds of faults.
This paper explores the power and the inherent costs of generic fault
detection in a distributed system. We propose a formal framework that
allows us to partition the set of all faults that can possibly occur in a
distributed computation into several fault classes. Then we formulate
the fault detection problem for a given fault class, and we show that this
problem can be solved for only two specific fault classes, namely omission

faults and commission faults. Finally, we derive tight lower bounds on
the cost of solving the problem for these two classes in asynchronous
message-passing systems.

Keywords: Fault classes, fault detection problem, message complexity,
lower bounds

1 Introduction

Handling faults is a key challenge in building reliable distributed systems. There
are two main approaches to this problem: Fault masking aims to hide the symp-
toms of a limited number of faults, so that users can be provided with correct
service in the presence of faults [4, 14], whereas fault detection aims at identi-
fying the faulty components, so that they can be isolated and repaired [7, 10].
These approaches are largely complementary. In this paper, we focus on fault
detection.

Fault detection has been extensively studied in the context of “benign” crash
faults, where it is assumed that a faulty component simply stops taking steps of
its algorithm [5, 6]. However, this assumption does not always hold in practice;
in fact, recent studies have shown that general faults (also known as Byzantine
faults [15]) can have a considerable impact on practical systems [17]. Thus, it
would be useful to apply fault detection to a wider class of faults. So far, very
little is known about this topic; there is a paper by Kihlstrom et al. [12] that
discusses Byzantine fault detectors for consensus and broadcast protocols, and
there are several algorithms for detecting certain types of non-crash faults, such

1

as PeerReview [10] and SUNDR [16]. However, many open questions remain; for
example, we still lack a formal characterization of the types of non-crash faults
that can be detected in general, and nothing is known about inherent costs of
detection.

This paper is a first step towards a better understanding of general fault
detection. We propose a formal model that allows us to formulate the fault
detection problem for arbitrary faults, including non-crash faults. We introduce
the notion of a fault class that captures a set of faults, i.e., deviations of system
components from their expected behavior. Solving the fault detection problem
for a fault class F means finding a transformation τF that, given any algorithm
A, constructs an algorithm Ā (called an extension of A) that works exactly like A
but does some additional work to identify and expose faulty nodes. Whenever a
fault instance from the class F appears, Āmust expose at least one faulty suspect
(completeness), it must not expose any correct nodes infinitely long (accuracy),
and, optionally, it may ensure that all correct nodes expose the same faulty
suspects (agreement).

Though quite weak, our definition of the fault detection problem still allows
us to answer two specific questions: Which faults can be detected, and how much
extra work from does fault detection require from the extension? To answer the
first question, we show that the set of all fault instances can be divided into
four non-overlapping classes, and that the fault detection problem can be solved
for exactly two of them, which we call commission faults and omission faults.
Intuitively, a commission fault exists when a node sends messages a correct
node would not send, whereas an omission fault exists when a node does not
send messages a correct node would send.

To answer the second question, we study the message complexity of the fault
detection problem, that is, the ratio between the number of messages sent by the
most efficient extension and the number of messages sent by the original algo-
rithm. We derive tight lower bounds on the message complexity for commission
and omission faults, with and without agreement. Our results show that a) the
message complexity for omission faults is higher than that for commission faults,
and that b) the message complexity is (optimally) linear in the number of nodes
in the system, except when agreement is required for omission faults, in which
case it is quadratic in the number of nodes.

In summary, this paper makes the following four contributions: (1) a formal
model of a distributed system in which various kinds of faults can be selectively
analyzed, (2) a statement of the fault detection problem for arbitrary faults, (3) a
complete classification of all possible faults, including a precise characterization
of the set of faults for which the fault detection problem can be solved, and (4)
tight lower bounds on the message complexity of the fault detection problem.
Viewed collectively, our results constitute a first step toward understanding the
power and the inherent costs of fault detection in a distributed system.

The rest of this paper is organized as follows: We begin by introducing our
system model in Section 2 and then formally state the fault detection problem
in Section 3. In Section 4, we present our classification of faults, and we show for

2

which classes the fault detection problem can be solved. In Section 5, we derive
tight bounds on the message complexity, and we conclude by discussing related
work in Section 6 and future work in Section 7. Omitted proofs can be found in
the full version of this paper, which is available as a technical report [9].

2 Preliminaries

2.1 System model

Let N be a set of nodes. Each node has a terminal3 and a network interface.
It can communicate with the other nodes by sending and receiving messages
over the network, and it can send outputs to, and receive inputs from, its local
terminal. We assume that processing times are negligible; when a node receives
an input, it can produce a response immediately.

Each message m has a unique source src(m) ∈ N and a unique destination
dest(m) ∈ N . We assume that messages are authenticated; that is, each node i
can initially create only messages m with src(m) = i, although it can delegate
this capability to other nodes (e.g., by revealing its key material). Nodes can
also forward messages to other nodes and include messages in other messages
they send, and we assume that a forwarded or included message can still be
authenticated.

A computation unfolds in discrete events. An event is a tuple (i, I, O), where
i ∈ N is a node on which the event occurs, I is a set of inputs (terminal inputs
or messages) that i receives in the event, and O is a set of outputs (terminal
outputs or messages) that i produces in the event. An execution e is a sequence
of events (i1, I1, O1), (i2, I2, O2), We write e|S for the subsequence of e that
contains the events with ik ∈ S; for i ∈ N , we abbreviate e{i} as e|i. When a
finite execution e is a prefix of another execution e′, we write e ⇂ e′. Finally, we
write |e| to denote the number of unique messages that are sent in e.

A system is modeled as a set of executions. In this paper, we assume that
the network is reliable, that is, a) a message is only received if it has previously
been sent at least once, and b) a message that is sent is eventually received at
least once. Formally, we assume that, for every execution e of the system and
every message m:

m ∈ Ik ⇒ [ik = dest(m) ∧ ∃l < k : (il = src(m) ∧m ∈ Ol)]

(m ∈ Ok ∧ src(m) = ik) ⇒ [∃l : il = dest(m) ∧m ∈ Il]

An open execution is an execution for which only the first condition holds. Thus,
an open execution may contain some messages that are sent, but not received.
This definition is needed later in the paper; an actual execution of the system is
never open. Finally, we introduce the following notation for brevity:

3 Instead of an actual terminal, nodes may have any other local I/O interface that
cannot be observed remotely.

3

– recv(i,m) ∈ e iff m is a message with i = dest(m) and (i, I, O) ∈ e with
m ∈ I.

– send(i,m, j) ∈ e iff m is a message with j = dest(m) and (i, I, O) ∈ e with
m ∈ O.

– in(i, t) ∈ e if t is a terminal input and (i, I, O) ∈ e with t ∈ I.

– out(i, t) ∈ e if t is a terminal output and (i, I, O) ∈ e with t ∈ O.

2.2 Algorithms and correctness

Each node i is assigned an algorithm Ai = (Mi, TIi, TOi, Σi, σ
i
0, αi), where Mi

is the set of messages i can send or receive, TIi is a set of terminal inputs i can
receive, TOi is a set of terminal outputs i can produce, Σi is a set of states,
σi

0 ∈ Σi is the initial state, and αi : Σi ×P (Mi ∪TIi) → Σi ×P (Mi∪TOi) maps
a set of inputs and the current state to a set of outputs and the new state. Here,
P (X) denotes the power set of X . For convenience, we define α(σ, ∅) := (σ, ∅)
for all σ ∈ Σi.

We make the following four assumptions about any algorithm Ai: a) it only
sends messages that can be properly authenticated, b) it never sends the same
message twice, c) it discards incoming duplicates and any messages that cannot
be authenticated, and d) it never delegates the ability to send messages m with
src(m) = i, e.g., by revealing or leaking i’s key material. Note that assumption
b) does not affect generality, since Ai can simply include a nonce with each
message it sends. We also assume that it is possible to decide whether Ai, starting
from some state σx, could receive some set of messages X in any order (plus
an arbitrary number of terminal inputs) without sending any messages. This
trivially holds if |Σi| <∞.

We say that a node i is correct in execution e|i = (i, I1, O1), (i, I2, O2), . . .
with respect to an algorithm Ai iff there is a sequence of states σ0, σ1, . . . in
Σi such that σ0 = σi

0 and, for all k ≥ 1, αi(σk−1, Ik) = (σk, Ok). Note that
correctness of a node i implies that the node is live: if i is in a state σk−1 and
receives an input I, then i must produce an output Ok such that αi(σk−1, Ik) =
(σk, Ok). If i is not correct in e|i with respect to Ai, we say that i is faulty in e|i
with respect to Ai.

A distributed algorithm is a tuple (A1, . . . , A|N |), one algorithm per node,
such that Mi = Mj for all i, j. When we say that an execution e is an execution
of a distributed algorithm A, this implies that each node i is considered correct
or faulty in e with respect to the algorithm Ai it has been assigned. We write
corr(A, e) to denote the set of nodes that are correct in e with respect to A.

2.3 Extensions

(Ā, A, µm, µs, XO) is called a reduction of an algorithm Ā = (M̄, T̄I, T̄O, Σ̄, σ̄0, ᾱ)
to an algorithm A = (M,TI, TO,Σ, σ0, α) iff µm is a total map M̄ 7→ P (M), µs

is a total map Σ̄ 7→ Σ, and the following conditions hold:

4

X1 T̄I = TI, that is, A accepts the same terminal inputs as Ā;
X2 T̄O = TO ∪XO and TO ∩XO = ∅, that is, A produces the same terminal

outputs as Ā, except XO;
X3 µs(σ̄0) = σ0, that is, the initial state of Ā maps to the initial state of A;
X4 ∀m∈M ∃ m̄∈M̄ : µm(m̄) = m, that is, every message of A has at least one

counterpart in Ā;
X5 ∀σ ∈ Σ ∃ σ̄ ∈ Σ̄ : µs(σ̄) = σ, that is, every state of A has at least one

counterpart in Σ̄;
X6 ∀σ̄1, σ̄2∈Σ̄, m̄i, m̄o⊆M̄, ti⊆TI, to ⊆ TO : [ᾱ(σ̄1, m̄i∪ ti) = (σ̄2, m̄o∪ to)] ⇒

[α(µs(σ̄1), µm(m̄i) ∪ ti) = (µs(σ̄2), µm(m̄o) ∪ (to \XO))], that is, there is a
homomorphism between ᾱ and α.

If there exists at least one reduction from an algorithm Ā to an algorithm A,
we say that Ā is an extension of A. For every reduction (Ā, A, µm, µs, XO) we
can construct an execution mapping µe that maps executions of Ā to (possibly
open) executions of A as follows:

1. Start with e = ∅.
2. For each new event (i, Ī, Ō), perform the following steps:

(a) Compute I := (Ī ∩ TIi)∪ µm(Ī ∩ M̄) and O := (Ō ∩ TOi)∪ µm(Ō ∩ M̄).
(b) Remove from I any m ∈M with dest(m) 6= i or recv(i,m) ∈ e.
(c) Remove from O any m ∈M with send(i,m, j) ∈ e.
(d) For each node j ∈ N , compute Oj := {m ∈ O | src(m) = j}.
(e) If I 6= ∅ or Oi 6= ∅, append (i, I, Oi) to e.
(f) For each j 6= i with Oj 6= ∅, append (j, ∅, Oj) to e.

A simple example of a reduction is the identity (A,A, id, id, ∅). Note that there
is a syntactic correspondence between an extension and its original algorithm,
not just a semantic one. In other words, the extension not only solves the same
problem as the original algorithm (by producing the same terminal outputs as
the original), it also solves it in the same way (by sending the same messages in
the same order). Recall that our goal is to detect whether or not the nodes in
the system are following a given algorithm; we are not trying to find a better
algorithm. Next, we state a few simple lemmas about extensions.

Lemma 1. Let Ā and A be two algorithms for which a reduction (Ā,A,µm,µs,XO)
exists. Then, if ē is an execution in which a node i is correct with respect to Ā,
i is correct in µe(ē) with respect to A.

Note that, if a node i is correct in ē with respect to Ā, then it must be correct in
µe(ē) with respect to A, but the reverse is not true. In other words, it is possible
for a node i to be faulty in ē with respect to Ā but still be correct in µe(ē) with
respect to A.

Lemma 2. Let Ā and A be two algorithms for which a reduction (Ā,A,µm,µs,XO)
exists, let ē1 be an execution of Ā, and let ē2 be a prefix of ē1. Then µe(ē2) is a
prefix of µe(ē1).

5

Lemma 3. Let Ā and A be two algorithms for which a reduction (Ā,A,µm,µs,XO)
exists, and let e be an execution of A. Then there exists an execution ē of Ā such
that a) µe(ē) = e (modulo duplicate messages sent by faulty nodes in e), and b)
a node i is correct in ē with respect to Ā iff it is correct in e with respect to A.

2.4 Facts and evidence

To detect faults, and to identify faulty nodes, the correct nodes must collect
information about the current execution. Clearly, no correct node can expect
to know the entire execution at any point, since it cannot observe events on
other nodes. However, each node can locally observe its inputs and outputs,
and each input or output rules out some possible executions that cannot be the
current execution. For example, if a node i receives a message m, this rules out
all executions in which m was never sent. If i manages to rule out all executions
in which some set S of nodes is correct, it has established that at least one node
s ∈ S must be faulty. Thus, we can use sets of plausible executions to represent
a node’s knowledge about the current execution.

Formally, we define a fact ζ to be a set of executions, and we say that a node
i knows a fact ζ at the end of an execution prefix e iff ζ contains all infinite
executions e′ where e|i is a prefix of e′|i (in other words, e′ is consistent with
all the inputs and outputs i has seen in e). If a node knows two facts ζ1 and
ζ2, it can combine them into a new fact ζ3 := ζ1 ∩ ζ2. If the system is running
an extension Ā of an algorithm A, we can map any fact ζ̄ about the current
execution ē of Ā to a fact ζ := {µe(x) |x ∈ ζ̄} about µe(ē).

Different nodes may know different facts. Hence, the nodes may only be able
to detect a fault if they exchange information. However, faulty nodes can lie,
so a correct node can safely accept a fact from another node only if it receives
evidence of that fact. Formally, we say that a message m is evidence of a fact ζ
iff for any execution ē of Ā in which any node receives m, µ(ē) ∈ ζ. Intuitively,
evidence consists of signed messages. For more details, please see Section 4.

2.5 Fault instances and fault classes

Not all faults can be detected, and some extensions can detect more faults than
others. To quantify this, we introduce an abstraction for an individual ‘fault’. A
fault instance ψ is a four-tuple (A,C, S, e), where A is a distributed algorithm,
C and S are sets of nodes, and e is an infinite execution, such that a) C and S
do not overlap, b) every c ∈ C is correct in e with respect to A, and c) at least
one node i ∈ S is faulty in e with respect to A. A fault class F is a set of fault
instances, and the nodes in S are called suspects.

Intuitively, the goal is for the correct nodes in C to identify at least one
faulty suspect from S. Of course, an ideal solution would simply identify all the
nodes that are faulty in e with respect to A; however, this is not always possible.
Consider the scenario in Figure 1. In this scenario, the nodes in C know that at
least one of the nodes in S must be faulty, but they do not know which ones, or
how many. Thus, the size of the set S effectively represents the precision with

6

G

B

C

D

I
A

L

J

M

O

E

Q

N

C
S

N
P

K

F

H

12

23

5

(a) Actual execution

D

S F

H

7

5

23
D

S F

H

7

16

23
D

S F

H

18

5

23

D

S F

H

7

38

23
D

S F

H

11

12

23
D

S F

H

81

19

23

(b) Alternative explanations
for K’s observation

Fig. 1. Example scenario. Nodes F and H are supposed to each send a number between
1 and 10 to D, who is supposed to add the numbers and send the result to K. If K

receives 23, it knows that at least one of the nodes in S = {D, F, H} must be faulty,
but it does not know which ones, or how many.

which the fault can be localized. The best case is |S| = 1; this indicates that
the fault can be traced to exactly one node. The worst case is S = N \ C; this
indicates that the nodes in C know that a fault exists somewhere, but they are
unable to localize it.

2.6 Environments

Our formulation of the fault detection problem does not require a bound on the
number of faulty nodes. However, if such a bound is known, it is possible to find
solutions with a lower message complexity. To formalize this, we use the notion
of an environment, which is a restriction on the fault patterns that may occur in
a system. In this paper, we specifically consider environments Ef , in which the
total number of faulty nodes is limited to f . If a system in environment Ef is
assigned a distributed algorithm A, the only executions that can occur are those
in which at most f nodes are faulty with respect to A.

3 The fault detection problem

Let ν := {faulty(X) |X ⊆ N} be a set of fault notifications. Then the fault
detection problem for a fault class F is to find a transformation τF that maps
any distributed algorithm A to an extension Ā := τF (A) such that T̄O = TO∪ν
and the following conditions hold:

C1 Nontriviality: If ē is an infinite execution of Ā and i ∈ N is correct in ē
with respect to Ā, then i outputs infinitely many fault notifications in ē.

C2 Completeness: If (A,C, S, e) is a fault instance in F , ē is an infinite exe-
cution such that µe(ē) = e, and each node c ∈ C is correct in ē with respect
to Ā, then there exists a correct node c′ ∈ N and a node j ∈ S such that
eventually all fault notifications output by c′ contain j.

C3 Accuracy: If ē is an infinite execution of Ā and c1, c2 ∈ N are any two nodes
that are correct in ē with respect to Ā, then c1 outputs infinitely many fault
notifications that do not include c2.

7

We also consider the fault detection problem with agreement, which additionally
requires:

C4 Agreement: If c1∈N and c2∈N are correct in an execution ē with respect
to Ā and there exists a node i ∈N such that eventually all fault notifica-
tions output by c1 in ē include some node i ∈N , then eventually all fault
notifications output by c2 in ē include i as well.

Note that condition C2 does not require us to detect nodes that are faulty in
ē with respect to Ā, but correct in µe(ē) with respect to A. Thus, we avoid the
infinite recursion that would result from trying to detect faults in the detector
itself. Note also that condition C3 is weaker than the definition of eventual strong
accuracy in [6], which requires that correct nodes eventually output only faulty
nodes. This change is necessary to make the problem solvable in an asynchronous
environment.

4 Which faults can be detected?

In the rest of this paper, we assume that the only facts for which evidence
can exist are a) message transmissions, and b) message receptions. Specifically,
a properly authenticated message m̄ with µm(m̄) = m and src(m) = i in an
execution ē is evidence of a fact {e | send(i,m, dest(m)) ∈ e} about µe(ē), and a
properly authenticated message m̄′ with src(m̄′) = i, m ∈ m̄′, and dest(m) = i
in an execution ē is evidence of a fact {e | recv(i,m) ∈ e} about µe(ē). Note
that in some systems it may be possible to construct evidence of additional
facts (e.g., when the system has more synchrony or access to more sophisticated
cryptographic primitives). In such systems, the following results may not apply.

4.1 Definitions

We define two fact maps φ+ and φ− as follows. Let e be an infinite execution or
an execution prefix, and let C be a set of nodes. Then φ+(C, e) is the intersection4

of all facts ζ for which at least one node in C can construct evidence in e (note
that there is usually no single node that can construct evidence of all facts), and
φ−(C, e) is the intersection of all facts ζ such that, if the complement ζ̄ were a
fact in e (i.e., e ∈ ζ), then at least one node in C could construct evidence of ζ̄
in e, but ζ̄ /∈ φ+(C, e). For brevity, we write φ±(C, e) to represent both kinds of
facts, that is, φ±(C, e) := φ+(C, e) ∩ φ−(C, e).

Intuitively, φ± represents the sum of all knowledge the nodes in C can have
in e if they exchange all of their evidence with each other. Since we have re-
stricted the admissible evidence to messages earlier, φ+(C, e) effectively repre-
sents knowledge about all the messages sent or received in e by the nodes in C,

4 Recall that facts are combined by forming the intersection. Since facts are sets of
plausible executions, an execution that is plausible given two facts ζ1 and ζ2 must
be a member of ζ1 ∩ ζ2.

8

F
NO

F
AM

∅=± N)e),(C,φπ(A,

∅=∪+ S)Ce),(C,φπ(A,

F
OM

F
CO

∅=∪± S)Ce),(C,φπ(A,

Fig. 2. Classification of all fault instances. The fault detection problem cannot be
solved for fault instances in FNO (Theorem 2) or FAM (Theorem 3), but solutions
exist for FOM and FCO (Theorem 4).

while φ−(C, e) effectively represents knowledge about all the messages not sent
or received in e by the nodes in C.

We also define the plausibility map π as follows. Let A be a distributed
algorithm, Z a set of facts, and C a set of nodes. Then π(A,Z,C) represents all
infinite executions e ∈ Z in which each node c ∈ C is correct in e with respect
to A. Intuitively, π(A,Z,C) is the set of executions of A that are plausible given
the facts in Z, and given that (at least) the nodes in C are correct.

A few simple properties of φ and π are: 1) C1 ⊆ C2 ⇒ φ(C2, e) ⊆ φ(C1, e),
that is, adding evidence from more nodes cannot reduce the overall knowledge;
2) p1 ⇂ p2 ⇒ φ(C, p2) ⊆ φ(C, p1), that is, knowledge can only increase during
an execution; 3) C1 ⊆ C2 ⇒ π(A,Z,C2) ⊆ π(A,Z,C1), that is, assuming that
more nodes are correct can only reduce the number of plausible executions; and
4) Z1 ⊆ Z2 ⇒ π(A,Z1, C) ⊆ π(A,Z2, C), that is, learning more facts can only
reduce the number of plausible executions.

4.2 Fault classes

We define the following fault classes (see also Figure 2):

FNO := {(A,C, S, e) |π(A, φ±(C, e), N) 6= ∅}

FAM := {(A,C, S, e) |π(A, φ±(C, e), N) = ∅ ∧ π(A, φ±(C, e), C ∪ S) 6= ∅}

FOM := {(A,C, S, e) |π(A, φ±(C, e), C ∪ S) = ∅ ∧ π(A, φ+(C, e), C ∪ S) 6= ∅}

FCO := {(A,C, S, e) |π(A, φ+(C, e), C ∪ S) = ∅}

FNO is the class of non-observable faults. For executions in this class, the nodes
in C cannot even be sure that the system contains any faulty nodes, since there
exists a correct execution of the entire system that is consistent with everything
they see. We will show later in this section that the fault detection problem
cannot be solved for faults in this class.

FAM is the class of ambiguous fault instances. When a fault instance is in
this class, the nodes in C know that a faulty node exists, but they cannot be
sure that it is one of the nodes in S. We will show later that the fault detection
problem cannot be solved for fault instances in this class. Note that the problem

9

here is not that the faults cannot be observed from C, but that the set S is too
small. If S is sufficiently extended (e.g., to N \C), these fault instances become
solvable.

FOM is the class of omission faults. For executions in this class, the nodes in
C could infer that one of the nodes in S is faulty if they knew all the facts, but
the positive facts alone are not sufficient; that is, they would also have to know
that some message was not sent or not received. Intuitively, this occurs when
the nodes in S refuse to send some message they are required to send.

FCO is the class of commission faults. For executions in this class, the nodes
in C can infer that one of the nodes in S is faulty using only positive facts.
Intuitively, this occurs when the nodes in S send some combination of messages
they would never send in any correct execution.

Theorem 1. (FNO, FAM , FOM , FCO) is a partition of the set of all fault in-
stances.

Proof. First, we show that no fault instance can belong to more than one class.
Suppose ψ := (A,C, S, e) ∈ FNO; that is, there is a plausible correct exe-
cution e′ of the entire system. Then ψ can obviously not be in FAM , since
π(A, φ±(C, e), N) cannot be both empty and non-empty. Since all nodes are
correct in e′, the nodes in C ∪ S in particular are also correct, so ψ 6∈ FOM

(Section 4.1, Property 3), and they are still correct if negative facts are ignored,
so ψ 6∈ FCO. Now suppose ψ ∈ FAM . Obviously, ψ cannot be in FOM , since
π(A, φ±(C, e), C ∪ S) cannot be both empty and non-empty. But ψ cannot be
in FCO either, since using fewer facts can only increase the number of plausible
executions (Section 4.1, Property 1). Finally, observe that ψ cannot be in both
FOM and FCO, since π(A, φ+(C, e), C∪S) cannot be both empty and non-empty.

It remains to be shown that any fault instance belongs to at least one of the
four classes. Suppose there is a fault instance ψ 6∈ (FNO ∪ FAM ∪ FOM ∪ FCO).
Since ψ is not in FNO, we know that π(A, φ±(C, e), N) = ∅. But if this is true
and ψ is not in FAM , it follows that π(A, φ±(C, e), C ∪ S) = ∅. Given this and
that ψ is not in FOM , we can conclude that π(A, φ+(C, e), C ∪S) = ∅. But then
ψ would be in FCO, which is a contradiction.

Theorem 2. The fault detection problem cannot be solved for any fault class F
with F ∩ FNO 6= ∅.

Proof sketch. The proof works by showing that, for any fault instance ψ :=
(A,C, S, e) ∈ FNO, we can construct two executions ēgood and ēbad of Ā := τ(A)
such that a) all the nodes are correct in ēgood, b) the fault occurs in ēbad, and
c) the two executions are indistinguishable from the perspective of the nodes
in C (that is, ēgood|C = ēbad|C). Hence, the nodes in C would have to both
expose some node in S (to achieve completeness in ēbad) and not expose any
node in S (to achieve accuracy in ēgood) based on the same information, which
is impossible. For the full proof, see [9]. 2

Theorem 3. The fault detection problem cannot be solved for any fault class F
with F ∩ FAM 6= ∅.

10

Proof sketch. The proof is largely analogous to that of Theorem 2, except that
we now construct two executions ē∈S and ē 6∈S of Ā := τ(A) such that a) in ē∈S

the faulty node is a member of S, b) in ē 6∈S all the nodes in S are correct, and c)
the two executions are indistinguishable from C. For the full proof, see [9]. 2

Corollary 1. If the fault detection problem can be solved for a fault class F ,
then F ⊆ FOM ∪ FCO.

Theorem 4. There is a solution to the fault detection problem with agreement
for the fault class FOM ∪ FCO.

For a transformation that solves the fault detection problem for this class, please
refer to the proof of Theorem 8 (Section 5.2) that appears in [9].

5 Message complexity

In this section, we investigate how expensive it is to solve the fault detection
problem, that is, how much additional work is required to detect faults. The
metric we use is the number of messages that must be sent by correct nodes.
(Obviously, the faulty nodes can send arbitrarily many messages). Since the
answer clearly depends on the original algorithm and on the actions of the faulty
nodes in a given execution, we focus on the following two questions: First, what
is the maximum number of messages that may be necessary for some algorithm,
and second, what is the minimum number of messages that is sufficient for any
algorithm?

5.1 Definitions

If τ is a solution of the fault detection problem, we say that the message complex-
ity γ(τ) of τ is the largest number such that for all k, there exists an algorithm
A, an execution e of A, and an execution ē of τ(A) such that

(µe(ē) = e) ∧ (|e| ≥ k) ∧

[

| {m̄ | send(i, m̄, j) ∈ ē ∧ i ∈ corr(τ(A), ē)} |

|e|
≥ γ(τ)

]

In other words, the message complexity is the maximum number of messages that
must be sent by correct nodes in any ē per message sent in the corresponding
e := µe(ē). The message complexity of the fault detection problem as a whole is
the minimum message complexity over all solutions.

5.2 Lower and upper bounds

In this section, we present a collection of tight lower bounds for solving various
instances of the fault detection problem. Omitted proofs can be found in the
technical report [9].

First we show that message complexity of the fault detection problem in the
environment Ef for both commission and omission faults is optimally linear in f .

11

Theorem 5. Any solution τ of the fault detection problem for FCO in the en-
vironment Ef has message complexity γ(τ) ≥ f + 2, provided that f + 2 < |N |.

Theorem 6. The message complexity of the fault detection problem with agree-
ment for FCO in the environment Ef is at most f+2, provided that f+2 < |N |.

Corollary 2. The message complexity of the fault detection problem (with or
without agreement) for FCO in environment Ef is f+2, provided that f+2 < |N |.

Theorem 7. Any solution τ of the fault detection problem for FOM in the en-
vironment Ef has message complexity γ(τ) ≥ 3f + 4, provided that f + 2 < |N |.

Theorem 8. The message complexity of the fault detection problem for FOM in
the environment Ef is at most 3f + 4, provided that f + 2 < |N |.

Interestingly, if we additionally require agreement, then the optimal message
complexity of the fault detection problem with respect to omission faults is
quadratic in |N |, under the condition that at least half of the nodes may fail.
Intuitively, if a majority of N is known to be correct, it should be possible to
delegate fault detection to a set ω with |ω| = 2f + 1, and to have the remaining
nodes follow the majority of ω. This would reduce the message complexity to
approximately |N | · (2f + 1).

Theorem 9. Any solution τ of the fault detection problem with agreement for
FOM in the environment Ef has message complexity γ(τ) ≥ (|N |−1)2, provided

that |N |−1

2
< f < |N | − 2.

Proof sketch. In contrast to commission faults, there is no self-contained proof of
an omission fault; when a node is suspected of having omitted a message m, the
suspicion can always turn out to be groundless when m eventually arrives. We
show that, under worst-case conditions, such a ‘false positive’ can occur after
every single message. Moreover, since agreement is required, a correct node must
not suspect (or stop suspecting) another node unless every other correct node
eventually does so as well. Therefore, after each message, the correct nodes may
have to ensure that their own evidence is known to all the other correct nodes,
which in the absence of a correct majority requires reliable broadcast and thus
at least (|N | − 1)2 messages. For the full proof, see [9]. 2

Theorem 10. The message complexity of the fault detection problem with agree-
ment for FOM in the environment Ef is at most (|N | − 1)2, provided that
f + 2 < |N |.

5.3 Summary

Table 1 summarizes the results in this section. Our two main results are that
a) detecting omission faults has a substantially higher message complexity than
detecting commission faults, and that b) the message complexity is generally
linear in the failure bound f , except when the fault class includes omission faults
and agreement is required, in which case the message complexity is quadratic in
the system size |N |.

12

Fault class Fault detection problem
Fault detection problem

with agreement

FCO

f + 2 f + 2

(Corollary 2) (Corollary 2)

FOM

3f + 4 (|N | − 1)2

(Theorems 7 and 8) (Theorems 9 and 10)

Table 1. Message complexity in environments with up to f faulty nodes.

6 Related work

There is an impressive amount of work on fault detection in the context of failure
detectors (starting from the original paper by Chandra and Toueg [6]). How-
ever, literature on failure detectors conventionally assumes crash-fault models,
and usually studies theoretical bounds on the information about failures that is
necessary to solve various distributed computing problems [5], without focusing
on the costs of implementing failure detectors.

Faults beyond simple crashes have been extensively studied in the context
of arbitrary (Byzantine) fault tolerance (starting from the original paper by
Lamport et al. [15]). Byzantine fault-tolerant systems aim to keep faults from
becoming “visible” to the system users. One example is Castro and Liskov’s
Practical Byzantine fault-tolerance (PBFT) [4] that extends Lamport’s state-
machine replication protocol [14] to the Byzantine failure model. However, BFT
systems do not detect and expose faulty nodes.

In the context of synchronous Byzantine agreement algorithms, Bar-Noy et
al [2] use the terms “fault detections” and “fault masking” in a more restrictive
manner than this paper does. In [2], a processor in an agreement protocol is said
to be “detected” if all correct processors agree that the processor is faulty. All
subsequent actions of this processor are then ignored and thus “masked”.

Also with respect to Byzantine agreement algorithms, Bracha [3] describes a
protocol in which all messages are broadcast, and in which all nodes track the
state of every other node in order to identify messages that could not have been
sent by a correct node.

Intrusion detection systems (IDS) can detect a limited class of protocol vio-
lations, for example by looking for anomalies [7] or by checking the behavior of
the system against a formal specification [13].

A technique that statistically monitors quorum systems and raises an alarm if
the failure assumptions are about to be violated was introduced in [1]. However,
this technique cannot identify which nodes are faulty.

To the best of our knowledge, Kihlstrom et al. [12] were the first to explicitly
focus on Byzantine fault detection. The paper also gives informal definitions of
the commission and omission faults. However, the definitions in [12] are specific
to consensus and broadcast protocols.

Our notions of facts and evidence in a distributed system are inspired by the
epistemic formalism of Halpern and Moses [11].

13

The results in this paper have important consequences for research on ac-
countability in distributed computing. Systems like PeerReview [10] provide ac-
countability by ensuring that faults can eventually be detected and irrefutably
linked to a faulty node. Since fault detection is an integral part of accountability,
this paper establishes an upper bound on the set of faults for which accountabil-
ity can be achieved, as well as a lower bound on the worst-case message com-
plexity. Note that practical accountability systems have other functions, such as
providing more detailed fault notifications, which we do not model here.

7 Conclusion and future work

In reasoning about computing systems, it is very important to find the right
language. Somewhat dangerously, intuitive claims sometimes become “folklore”
before they are actually stated precisely and proved. For example, exact bounds
on the information about crash failures needed for solving agreement, though
informally anticipated earlier [8,14], were captured precisely only with the intro-
duction of failure detectors [6], and especially the notion of the weakest failure
detector [5].

Similarly, this paper has developed a language for reasoning about fault de-
tection with general fault models (beyond simple crash faults). We have proposed
a framework in which generic faults can be precisely defined and classified. Un-
like crash faults, generic faults cannot be defined without reference to an algo-
rithm, which is why we have introduced the expected system behavior into the
definition. To determine the inherent costs of generic fault detection, we have
proposed a weak definition of the fault detection problem, and we have derived
exact bounds on the cost of solving it in asynchronous message-passing systems
where nodes are able to digitally sign their messages.

The framework we have presented can also be used to study fault detection in
other system models. If the model is weakened or strengthened (e.g., by varying
the assumptions about the network, the degree of synchrony, or the available
cryptographic primitives), the kinds of evidence available to correct nodes can
change, as can the set of executions that are plausible given some specific ev-
idence. This change, in turn, affects the ability of correct nodes to detect and
isolate faulty nodes. For instance, if bounds on communication and processing
times are known, it is possible to establish in finite time that an omission fault
has occurred, and the culprits can safely be suspected forever. The model could
also be changed by introducing bounds on the message size and/or the set of
states Σ. These changes would likely increase the message complexity and reduce
the size of the fault classes for which detection is possible.

Our framework can be used to study different variants of the fault detection
problem. The (weak) formulation of the problem chosen in this paper was pri-
marily instrumental for establishing impossibilities and complexity lower bounds
that capture inherent costs of detection in the asynchronous systems. In other
scenarios, however, different formulations may make more sense. For example,
accuracy could be strengthened such that eventually no correct node is suspected

14

by any correct node; this would require stronger synchrony assumptions [6, 8].
On the other hand, completeness could be relaxed in such a way that faults must
only be detected with high probability. Preliminary evidence suggests that such
a definition would substantially reduce the message complexity [10].

In conclusion, we believe that this work is a step toward a better understand-
ing of the costs and limitations of fault detection in distributed systems. We also
believe that this work could be used as a basis for extending the spectrum of
fault classes with new intermediate classes, ranging between the “benign” crash
faults (which have proven to be too restrictive for modern software) and the
generic but rather pessimistic Byzantine faults.

References

1. Alvisi, L., Malkhi, D., Pierce, E.T., Reiter, M.K.: Fault detection for Byzantine
quorum systems. IEEE Trans. Parallel Distrib. Syst. 12(9), 996–1007 (2001)

2. Bar-Noy, A., Dolev, D., Dwork, C., Strong, H.R.: Shifting gears: changing algo-
rithms on the fly to expedite Byzantine agreement. In: PODC. pp. 42–51 (1987)

3. Bracha, G.: Asynchronous Byzantine agreement protocols. Information and Com-
putation 75(2), 130–143 (Nov 1987)

4. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20(4), 398–461 (Nov 2002)

5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (Jul 1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (Mar 1996)

7. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software En-
gineering 13(2), 222–232 (1987)

8. Dolev, D., Dwork, C., Stockmeyer, L.: On the minimal synchronism needed for
distributed consensus. J. ACM 34(1), 77–97 (Jan 1987)

9. Haeberlen, A., Kuznetsov, P.: The fault detection problem (Oct 2009), Technical
Report MPI-SWS-2009-005, Max Planck Institute for Software Systems

10. Haeberlen, A., Kuznetsov, P., Druschel, P.: PeerReview: Practical accountability
for distributed systems. In: SOSP. pp. 175–188 (Oct 2007)

11. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (Jul 1990)

12. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault detectors for
solving consensus. The Computer Journal 46(1), 16–35 (Jan 2003)

13. Ko, C., Fink, G., Levitt, K.: Automated detection of vulnerabilities in privileged
programs using execution monitoring. In: Proceedings of the 10th Annual Com-
puter Security Application Conference (Dec 1994)

14. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(May 1998)

15. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Progr. Lang. Syst. 4(3), 382–401 (Jul 1982)

16. Li, J., Krohn, M., Mazières, D., Sasha, D.: Secure untrusted data repository
(SUNDR). In: OSDI (Dec 2004)

17. Vandiver, B., Balakrishnan, H., Liskov, B., Madden, S.: Tolerating Byzantine faults
in transaction processing systems using commit barrier scheduling. In: SOSP (Oct
2007)

15

