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Abstract
In this paper, we study the problem of answering queries
about private data that is spread across multiple different
databases. For instance, a medical researcher may want
to study a possible correlation between travel patterns
and certain types of illnesses. The necessary informa-
tion exists today – e.g., in airline reservation systems
and hospital records – but it is maintained by two sepa-
rate companies who are prevented by law from sharing
this information with each other, or with a third party.
This separation prevents the processing of such queries,
even if the final answer, e.g., a correlation coefficient,
would be safe to release.

We present DJoin, a system that can process such dis-
tributed queries and can give strong differential privacy
guarantees on the result. DJoin can support many SQL-
style queries, including joins of databases maintained by
different entities, as long as they can be expressed using
DJoin’s two novel primitives: BN-PSI-CA, a differen-
tially private form of private set intersection cardinal-
ity, and DCR, a multi-party combination operator that
can aggregate noised cardinalities without compounding
the individual noise terms. Our experimental evaluation
shows that DJoin can process realistic queries at prac-
tical timescales: simple queries on three databases with
15,000 rows each take between 1 and 7.5 hours.

1 Introduction

A vast amount of information is constantly accumu-
lating in databases (social networks, hospital records,
airline reservation systems, etc.) all around the world.
There are many good uses to which this data could po-
tentially be put; however, much of this data is sensitive
and cannot safely be released because of privacy con-
cerns. Simple solutions, such as anonymizing or aggre-
gating the data before release, are not reliable; experi-
ence with cases like the Netflix prize [3] or the AOL
search data [2] shows that such data can sometimes be
de-anonymized with auxiliary information [26].

Differential privacy [7] has been proposed as a way to
solve this problem. By disallowing certain queries, and
by adding a carefully chosen amount of noise to the re-

sult of others, it is possible to give a strong upper bound
on how much an adversary could learn about an individ-
ual person’s data, even under worst-case assumptions.
Several differentially private query processors, includ-
ing PINQ [23], Airavat [32], Fuzz [16], and PDDP [6],
have been developed and are available today.

However, existing query processors assume either
that all the data is available in a single database [16, 23,
32] or that distributed queries can be broken into sev-
eral subqueries that can each be answered using only
one of the databases [6, 10, 15, 31]. In practice, this is
not necessarily the case. For instance, suppose a medical
researcher wanted to study how a certain illness is cor-
related with travel to a particular region. This data may
be available, e.g., in a hospital database H and an airline
reservation system R, but to determine the correlation,
it is necessary to join the two databases together – for
instance, we must count the individuals who have been
treated for the illness (according to H) and have traveled
to the region (according to R).

We are not aware of any existing method or query
processor that can efficiently support join queries with
differential privacy guarantees. Joins cannot be bro-
ken into smaller subqueries on individual databases be-
cause, in order to match up the same persons’ data
in the two databases, such queries would have to ask
about individual rows, which is exactly what differen-
tial privacy is designed to prevent. In principle, one
could process joins using secure multi-party computa-
tion (MPC) [38], but MPC is only practical for small
computational tasks, and differential privacy only works
well for large databases. The cost of an entire join under
MPC would be truly spectacular.

DJoin, the system we present in this paper, is a so-
lution to this problem. DJoin can support SQL-style
queries across multiple databases, including common
forms of joins. The key insight behind DJoin is that the
distributed parts of many queries can be expressed as
intersections of sets or multisets. For instance, we can
rewrite the query from above to locally select all patients
with the illness from H and all travelers to the relevant
region from R, then intersect the resulting sets, and fi-
nally count the number of elements in the intersection.
Not all SQL queries can be rewritten in this way, but
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many counting queries can: conjunctions and disjunc-
tions of equality tests directly correspond to unions and
intersections of data elements. As we will show, a num-
ber of additional operations, such as inequalities and nu-
meric comparisons, can be expressed in terms of multi-
set operations.

Protocols for private set operations have been stud-
ied by cryptographers for some time [14, 17, 37], but
existing solutions compute exact set elements or exact
cardinalities, which is not compatible with differential
privacy. We present blinded, noised private set inter-
section cardinality (BN-PSI-CA), an extension of the
set-intersection protocol from [17] that supports private
noising, as well as denoise-combine-renoise (DCR), an
operator that can add or subtract multiple noised sub-
set cardinalities without compounding the correspond-
ing noise terms. DCR relies on MPC to remove the noise
terms on its inputs and to re-noise the output, but DCR’s
complexity grows with the number of parties and not
with the number of elements in the sets. For the queries
we tried, this step never took more than 20 seconds.

We have implemented and evaluated a prototype of
DJoin. Our results show that the costs are substantial but
typically feasible. For instance, the elements in a sim-
ple two-way join on databases with 32,000 rows each
can be evaluated in about 1.8 hours, with 83 MB of
traffic, using a single commodity workstation for each
database. This is orders of magnitude faster than gen-
eral MPC. DJoin’s cost is too high for interactive use,
but it seems practical for applications that can tolerate a
certain amount of latency, such as research studies. Our
algorithms are easy to parallelize, so the speed could be
improved by increasing the number of cores.

To summarize, this paper makes the following four
contributions:

• two new primitives, BN-PSI-CA and DCR, for dis-
tributed private query processing (Section 4);
• a query planner that rewrites SQL-style queries to

take advantage of those two primitives (Section 5);
• the design of DJoin, an engine for distributed, dif-

ferentially private queries (Section 6); and
• an experimental evaluation of DJoin, based on a

prototype implementation (Section 7).

2 Related work
DJoin provides differential privacy [7, 8, 9, 11], which
is one of the strongest privacy guarantees that have been
proposed so far. Alternatives include randomization [1],
k-anonymity [34], and l-diversity [21], which are gener-
ally less restrictive but can be vulnerable to certain at-
tacks on privacy [12, 20]. Differential privacy offers a
provable bound on the amount of information that an at-

tacker can learn about any individual, even with access
to auxiliary information.
Differentially private query processors: PINQ [23],
Airavat [32], and Fuzz [16] are query processors that
support differential privacy, but they assume a central-
ized setting in which a single entity has access to the en-
tire data. We are aware of five solutions for distributed
settings [6, 10, 15, 31, 33], but these assume that the data
is horizontally partitioned (i.e., each individual’s data is
completely contained in one of the databases), and that
the query can be factored into subqueries that are each
local to a single database. For instance, [10] computes
queries of the form ∑i f (di), i.e., the sum over all rows i
in the database after applying a function f to each row.
DJoin’s data model is more general: multiple databases
may contain data for a given individual, and queries
can contain joins. We note that some of the other sys-
tems have far more sophisticated query languages, but
we speculate that DJoin’s rewriting and execution en-
gine could be integrated with existing systems, e.g., with
PINQ or Fuzz.
Private set operations: The first protocols for private
two-party set intersection and set intersection cardinal-
ity were proposed by Freedman et al. [14]. Since then,
a number of improvements have been proposed; for in-
stance, Kissner and Song [17] extended the protocols to
multiple parties, and Vaidya and Clifton [37] reduced
the computational overhead. These protocols produce
exact results, and are thus not directly suitable for dif-
ferential privacy. There are specialized protocols for
other private multi-party operations, e.g., for decision-
tree learning [29], and some of these have been adapted
for differential privacy, e.g., [39].
Computational differential privacy: The standard def-
inition of differential privacy is information-theoretic,
i.e., it holds even against a computationally unbounded
adversary. In contrast, DJoin provides computational
differential privacy [25]: it relies on a homomorphic
cryptosystem and thus depends on certain computa-
tional hardness assumptions. Mironov et al. [25] demon-
strated a protocol for this model that privately approxi-
mates the Hamming distance between two vectors in a
two-party setting. This problem is closely related to that
of computing the cardinality of set intersections, which
is solved by BN-PSI-CA.
Untrusted servers: Several existing systems enable
clients to use an untrusted server without exposing
private information to that server. In SUNDR [19],
SPORC [13], and Depot [22], the server provides stor-
age; in CryptDB [30], it implements a database and
SQL-style queries. This approach is complementary to
ours: DJoin’s goal is to reveal some useful information
about the data it stores, but with an upper bound on how
much can be learned about a single individual.
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Query

Bob: Cancer

Quentin

Doris: Abuja Bob: Paris

Charlie Carol Chris

Bob: Cancer
Doris: Malaria
Hank: Malaria
...

Doris: Abuja
Emil: Vegas
Frank: Seattle
...

Bob: Paris
Greg: Tokyo
Hank: Conakry
...

Figure 1: Motivating scenario. Charlie is a physician,
and Carol and Chris are travel agents. Quentin would
like to know the correlation between treatment for
malaria and travel to high-risk areas.

3 Background and overview

3.1 Motivating scenario
Figure 1 shows our motivating scenario. Charlie, Carol,
and Chris each have a database with confidential infor-
mation about individuals; for instance, Charlie could be
a physician, and Carol and Chris could be travel agents.
We will refer to these three as the curators. Quentin
asks a question that combines data from each of the
databases; for instance, he might want to know the cor-
relation between treatment for malaria and travel to ar-
eas with a high risk of malaria infections. We will refer
to Quentin as the querier.

Our goal is to build a system that can give an (at least
approximate) answer to Quentin’s question while offer-
ing strong privacy guarantee to the individuals whose
data is in the databases. In particular, we would like to
establish an upper bound on how much additional in-
formation any participant of the system (queriers or cu-
rators) can learn about any individual in the database.
The word ‘additional’ is crucial here, since the curators
each have full access to their respective databases. For
instance, since Charlie has treated Bob for cancer, our
system cannot prevent him from learning this fact, but it
can prevent him from learning whether or not Bob has
recently traveled to Paris.

3.2 Differential privacy
To formally define the privacy guarantee we want to
provide, we rely on differential privacy [7]. Differen-
tial privacy is a property of randomized queries that take
a database as input and return a result that is typically
some form of aggregate (such as a number representing
a count, a histogram, etc). The database is seen as a col-
lection of rows, and each row contains the data from one
individual.

Informally, a randomized function is differentially
private if arbitrary changes to a single individual’s

row (while keeping the other rows constant) result in
only statistically insignificant changes in the function’s
output distribution. Thus, the presence or absence of
any individual has a statistically negligible effect. For-
mally [11], differential privacy is parametrized by a real
number ε , which corresponds to the strength of the pri-
vacy guarantee; smaller values of ε yield better privacy.
Two databases b and b′ are considered similar, written
b ∼ b′, if they differ in only one row. We then say that
a randomized function f with range R is ε-differentially
private if, for all possible sets of outputs S ⊆ R, and for
all similar databases b,b′, we have

Pr[ f (b) ∈ S]≤ eε ·Pr[ f (b′) ∈ S]

That is, when the input database is changed in one
row, there is at most a small multiplicative difference
(eε ) in the probability of any set of outcomes S. A
slightly weaker variant of this privacy definition is
(ε,δ )-differential privacy [10], where δ is a bound on
the maximum additive (not multiplicative) difference
between the probabilities of a given output with and
without a particular input row.

Practical solutions for achieving differential privacy
typically rely on adding a carefully chosen amount of
noise to the result. The required amount of noise de-
pends on the sensitivity of the query, i.e., how much
the result can change in response to changing the data
in a single row [11]. More formally, if q is a func-
tion that computes the (exact) result of the query and
|q(b)− q(b′)| ≤ s for any pair of similar databases b ∼
b′, the query is s-sensitive, and we can construct an ε-
differentially private function f by adding noise to s
that is drawn from a Laplace distribution with parame-
ter λ = s/ε . This corresponds to the intuition that more
sensitive queries need more noise to conceal the contri-
butions of any given individual.

3.3 Challenge: Distribution
Answering differentially private queries over a single
database is a well-studied problem, and several sys-
tems [16, 23, 32] are already available for this purpose.
In principle, these systems can also be used to answer
queries across multiple databases, but this requires that
all curators turn over their data to a single trusted entity
(e.g., one of the curators), who evaluates the query on
their behalf. However, there may not always be a single
entity that is sufficiently trusted by all the curators, so
it seems useful to have an alternative solution that does
not require a trusted entity.

In some cases, distributed queries can be factored into
several subqueries that can each be executed on an in-
dividual database. For instance, a group of doctors can
count the number of male patients in their respective

3



databases by counting the number of patients in each
database separately, and then add up the (individually
noised) results. This type of distributed query is sup-
ported by several existing systems [6, 10, 15, 31, 33].
However, not all queries can be factored in this way. For
instance, the above approach will double-count male pa-
tients that have been treated by more than one doctor, but
a union query (which would avoid this problem) cannot
be expressed as a sum of counts. Similarly, any query
that involves joining several databases (such as our mo-
tivating example) cannot be expressed in this way.

Joins could be supported via general-purpose multi-
party computation (MPC) [38], but the required run-
times would be gigantic: state-of-the-art MPC solutions,
such as FairplayMP [4], need about 10 seconds to eval-
uate (very simple) functions that can be expressed with
1,024 logic gates. Since the number of gates needed for
a join would be at least quadratic in the number of input
rows, and since differential privacy only works well for
large databases, this approach does not seem practical.

3.4 Approach
The key insight behind our solution is that joins are
rarely used to compute full cross products of different
databases; rather, they are often used to ‘match up’ ele-
ments from different databases. For instance, in our run-
ning example, we can first select all the individuals in
R who have traveled to the region of interest, then se-
lect all the individuals in H who have been treated for
the illness, and finally count the number of individuals
who appear in both sets. Thus, the problem of privately
answering the overall query is reduced to 1) some local
operations on each database, and 2) privately comput-
ing the cardinality of the intersection of multiple sets.
Not all queries can be decomposed in this way, but, as
we will show in Section 5, there is a substantial class of
queries that can.

Protocols for private multiset operations (such as in-
tersection and union) are available [14, 17, 37], but they
tend to compute exact sets or set cardinalities. If we
naı̈vely used these algorithms, Charlie could compute
the intersection of the set of the malaria patients in his
database with the sets of customers in Carol’s and Chris’
databases who have traveled to high-risk areas, and then
add noise in a collaborative fashion [10]. This would
prevent Quentin from learning anything other than the
(differentially private) output of the query — but Charlie
could learn where his patents have traveled, and Carol
and Chris could learn which of their customers have
been treated for malaria. Hence, our first challenge is to
extend these set-intersection operations to support nois-
ing between the data curators.

A second challenge arises because some queries in-
volve multiple set operations. If Charlie simply added

the two cardinalities together, the noise terms would
compound, and thus (unnecessarily) degrade the qual-
ity of the overall result. To avoid this problem, we need
a way to de-noise, combine, and re-noise intermediate
results without compromising privacy.

4 Building blocks: BN-PSI-CA and DCR

Next, we describe two key building blocks that enable
private processing of distributed queries. Each building
block performs only one, very specific operation. In Sec-
tion 5, we will describe how these building blocks can
be used in a larger query plan to answer a variety of dif-
ferent queries.

4.1 Background: PSI-CA
Our first building block is related to a primitive called
private set-intersection cardinality (PSI-CA), which al-
lows a group of k curators with multisets S1, . . . ,Sk
to privately compute |

⋂
i Si |, i.e., the (exact) number

of elements they have in common, but not the spe-
cific elements in

⋂
i Si. PSI-CA is a well-studied prim-

itive [14, 17, 37], albeit not in the context of differential
privacy. To explain the intuition, we describe one simple
PSI-CA primitive [14] for only two curators with simple
sets in the honest-but-curious (HbC) model. The prim-
itive uses a homomorphic encryption scheme that pre-
serves addition and allows multiplication by a constant.
Paillier’s cryptosystem [28] is an example of a scheme
that has this property.

Suppose the two curators are C1 and C2 and their sets
are S1 :={x1, . . .} and S2 :={y1, . . .}. C1 defines a poly-
nomial P(z) over a finite field whose roots are his set
elements xi:

P(z) := (x1− z)(x2− z) · · ·= ∑
u

αuzu

Next, C1 sends homomorphic encryptions of the coef-
ficients αu to C2, along with the public key. For each
element yi ∈ S2, C2 then computes Enc(rP(yi) + 0+),
i.e., she evaluates the polynomial at each of her inputs,
multiplies each result by a fresh random number r, and
finally adds a special string 0+, e.g., a string of zeroes.
Since the cryptosystem is homomorphic, C2 can do this
even though she does not know C1’s private key. Finally,
C2 sends a random permutation of the results back to
C1, who decrypts them and counts the occurrences of
the special string 0+, which is exactly |S1

⋂
S2 |.

At first glance, the cost of this algorithm appears
to be quadratic: C2 must compute Enc(rP(yi) + 0+)
for each of her |S2 | inputs, which involves computing
Enc(P(yi)) along the way. If this is naı̈vely evaluated as
Enc(∑

|S1|
u=0 αuyu

i ), C2 must multiply each of the |S1 |+ 1
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encrypted coefficients with an unencrypted constant
(yu

i ), which requires an exponentiation each time, for a
total of O(|S1| · |S2|) exponentiations. However, [14] de-
scribes several optimizations that can reduce this over-
head, including an application of Horner’s rule and the
use of hashing to replace the single high-degree polyno-
mial with several low-degree polynomials. This reduces
the computational overhead to O(|S1|+ |S2| ln ln |S1|)
exponentiations.

4.2 BN-PSI-CA: Two-party case
The basic PSI-CA primitive is not compatible with dif-
ferential privacy because C1 learns the exact, un-noised
size of |S1

⋂
S2 |; moreover, each curator can learn the

size of the other curator’s set by observing the number of
encrypted coefficients, or encrypted return values, that
are received from that curator. However, we can extend
the primitive to avoid both problems.

First, we need to make the number of coefficients and
return values independent of the set sizes. We can do
this by adding some extra elements that cannot appear in
either of the sets. As long as we can ensure that C1 and
C2 are adding different elements (e.g., by setting some
bit to zero on C1 and to one on C2), this will not affect
the size of the intersection. In DJoin, we assume that a
rough upper bound on the size of each curator’s database
is known, and we add enough elements to fill up both
sets to that upper bound.

Second, we need to add some noise n to the result
that is revealed to C1. We observe that C2 can increase
the apparent size of the intersection by n if she adds n
different1 encodings of the special string 0+. However,
to guarantee ε-differential privacy, we would have to
draw n from a Laplace distribution Lap(1/ε), and this
would sometimes yield n < 0 – but C2 cannot remove
encodings of 0+ because she does not have C1’s pri-
vate key, and thus cannot tell them apart from encod-
ings of other values. Instead, we require C2 to draw n
from X2 +Lap(1/ε) and we cut n at 0 and 2 ·X2; thus,
C2 can add n encodings of 0+ and 2 ·X2− n encodings
of a random value to keep the overall size independent
of n. (Cutting the Laplace distribution can leak a small
amount of information when the extremal values are
drawn, and thus changes the privacy guarantee to (ε,δ )-
differential privacy [10]; however, by increasing X2, we
can make δ arbitrarily small, at the expense of a higher
overhead.) We call the resulting primitive blinded noised
PSI-CA (BN-PSI-CA).

Note that at the end, C2 knows the noise term n and
C1 the noised cardinality |S1

⋂
S2 |+ n. Thus, if the lat-

ter is used in further computations, we have an opportu-

1The Paillier cryptosystem can construct many different cipher-
texts for the same plaintext.

nity to remove the noise again, as long as we can ensure
that neither curator learns both values. This prevents the
noise terms from compounding, and it enables us to use
a very high noise level (and thus a low value of ε) be-
cause the noise will not affect the final result.

4.3 BN-PSI-CA: Multi-party case
Since Freedman’s initial work, cryptographers have con-
siderably extended the range of private multiset op-
erations. For instance, the protocol by Kissner and
Song [17] also supports set unions, as well as set in-
tersections with more than two parties, and it is compo-
sitional: the result of a set union or set intersection can
be unioned or intersected with further sets, without de-
crypting it first. [17] can evaluate any function on mul-
tisets that can be described by the following grammar:

ϒ ::= s |ϒ∩ϒ |s∪ϒ |ϒ∪ s

where s is a multiset that is known to some curator Ci.
The protocol from [17] computes |

⋂
i=1,...,k Si | as fol-

lows. First, the k curators use a homomorphic thresh-
old cryptosystem to share a secret key sk amongst them-
selves, while the corresponding public key pk is known
to all curators. Each curator Ci now encrypts a polyno-
mial Pi whose roots are the elements of its local set Si.
The encrypted polynomials are then essentially added
together, yielding a polynomial P whose roots are the
elements in the intersection. Each curator Ci now eval-
uates P on the elements ei j of his local set Si, yielding
values vi j := P(ei j); however, recall that, because sk is
shared, no individual curator can decrypt the vi j. The
curators then securely re-randomize and shuffle [27] the
vi j, such that each curator learns all the vi j but cannot tell
which curator it came from. Finally, the curators jointly
decrypt the vi j. If there are n elements in the intersection,
this yields n · k zeroes; hence, each curator can compute
the final result by dividing the number of zeroes by k.

We can use the same blinding technique as in Sec-
tion 4.2 to construct a multi-party version of BN-PSI-
CA. After computing the vi j, but before the shuffle, each
curator draws a noise term ni as above and adds 2 ·Xi ex-
tra values, ni of which are 0+. As above, this adds ∑i ni
to the resulting cardinality, but the noise can be removed
again via DCR, which we discuss next.

4.4 DCR: Adding cardinalities
BN-PSI-CA is sufficient to answer queries that require
a single distributed multiset operation. However, in Sec-
tion 5.2 we will see that some queries require multiple
operations, and that the result is then a linear combina-
tion of the different cardinalities. In principle, we could
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designate a single curator C that collects all cardinali-
ties and computes the overall result; however, this would
a) compound all the noise terms and thus decrease the
quality of the result, and b) reveal all the intermediate
results to C and thus (unnecessarily) reveal some private
information.

Instead, we can combine the various cardinalities us-
ing secure multi-party computation (MPC) [38]. If we
have a number of players with private inputs xi that are
each known to only one of the players, MPC allows the
players to collectively compute a function f (x1,x2, . . .)
without revealing the inputs to each other. Even after
decades of research, MPC remains impractical for com-
plex functions or large inputs, but modern implementa-
tions, such as [4], can process simple functions in a few
seconds or less. Thus, while MPC may be too expensive
to evaluate the entire query, we can certainly use it to
combine a small number of subquery results.

For instance, suppose the query is for |S1
⋂

S2|+
|S3

⋂
S4|, and that there are four curators involved: C1

and C3 learn the noised results R1 and R2 for the first
and the second term, respectively, and C2 and C4 learn
the corresponding noise terms n1 and n2. Then we can
compute the query result under MPC as

q = R1 +R2− (n1 +n2)+N

where each of the four curators contributes one of the
private inputs Ri and ni, and N is a new, global noise
term. Next, we describe how N is computed.

4.5 DCR: Cooperative noising

MPC enables us to safely remove the noise that was
added to the individual cardinalities by BN-PSI-CA, but
we must add back a sufficient amount of noise N as part
of the MPC, i.e., before the result is revealed. To prevent
information leakage, the new noise N must be such that
no individual curator can control it or predict its value.

We follow the algorithm in [10] to generate the noise
N, with some implementation modifications. Each cu-
rator chooses a random bitstring vi uniformly at ran-
dom and contributes it as an input to the MPC. The
MPC computes v := v1⊕ v2⊕·· ·. As long as a curator
honestly chooses vi uniformly at random and does not
share this with any other party, she can be certain that
no other curator can know anything else about the com-
puted noise string v, even if every single other curator
colludes. Finally, the MPC uses the fundamental trans-
formation law of probabilities to change the distribution
of v to a Laplace distribution Lap(1/ε). This yields the
noise term N, which is then added to the query result.
We call this primitive denoise-combine-renoise (DCR).

query := SELECT output FROM union
WHERE predicate

output := NOISY COUNT(field)
union := rows | union UNION ALL rows
rows := join | subquery
join := db{,db}∗
subquery := SELECT fields FROM join

WHERE predicate
predicate := term | predicate OR term |

predicate AND term
term := val = val | val != val |

val < val
val := number | string | db.field

Figure 2: DJoin’s query language.

5 Distributed query processing

So far, we have described BN-PSI-CA, which can com-
pute differentially private set intersection cardinalities,
and DCR, which can privately combine multiple cardi-
nalities. Next, we describe how DJoin integrates these
two primitives into larger query plans that can answer
SQL-style queries.

5.1 Query language: SPJU
For ease of presentation, we describe our approach us-
ing the simple query language in Figure 2, which con-
sists of SQL-style operators for selection, projection, a
cross join, and union (SPJU). This query language is
obviously much simpler than SQL itself, but it is rich
enough to capture many interesting distributed opera-
tions. We note that many of the missing features of SQL
can easily be added back, as long as queries do not use
them to access more than one database at a time.

Each query in our language can be translated into re-
lational algebra, specifically, in a combination of selec-
tions (σ ), projections (π), joins (./), unions (

⋃
), and

counts (| · |). For instance, the query

SELECT COUNT(A.id) FROM A,B
WHERE (A.ssn=B.ssn OR A.id=B.id)
AND A.diagnosis=’malaria’

could be written (with abbreviations) as:

|σ(A.ssn=B.ssn∨A.id=B.id)∧A.diag=”malaria”(A ./ B) |

Figure 3(a) shows a graphical illustration of this query.

5.2 Query rewriting
Most distributed queries cannot be executed natively by
DJoin because they contain operators (such as ./ or <)
that our system cannot support. Therefore, such queries
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From To
R1 Local sel. σP(X)∧Q(X ./ Y ) σQ(σP(X) ./ Y )
R2 Disjunction σP∨Q(X ./ Y ) σP(X ./ Y )

⋃
σQ(X ./ Y )

R3 Split |σX .a=Y.b∧(P(X)∨Q(Y ))(X ./Y )| |σX .a=Y.b(σP(X) ./ Y )|+ |σX .a=Y.b(σ¬P(X) ./ σQ(Y ))|
R4 Union |X

⋃
Y | |X |+ |Y |− |X

⋂
Y |

R5 Not equal |σX .a=Y.b∧X .c6=Y.d(X ./ Y )| |σX .a=Y.b(X ./ Y )|− |σX .a=Y.b∧X .c=Y.d(X ./ Y )|
R6 Comparison |σX .a=Y.b∧X .c>Y.d(X ./ Y )| ∑i=0..k−1 |πa ||pre(c,i)(σbit(c,i)=1(X))

⋂
πb ||pre(d,i)(σbit(d,i)=0(Y ))|

R7 Equality |σX .a=Y.b∧X .c=Y.d(X ./ Y )| |σ(X .a||pad ||X .c)=(Y.b||pad ||Y.d)(X ./ Y )|
R8 Join |σX .a=Y.b(X ./ Y )| |πa(X)

⋂
πb(Y )|

Table 1: DJoin’s rewrite rules. These rules are used to transform a query (written in the language from Figure 2) into
the intermediate query language from Figure 4, which can be executed natively.

| ⋅ |

σA B σA id B id
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A B
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(b) Rewritten for DJoin

Figure 3: Query example. The original plan (left) cannot
be executed without compromising privacy. The rewrit-
ten plan (right) consists of three tiers: a local tier, a BN-
PSI-CA tier, and a DCR tier.

must be transformed into other queries that are semanti-
cally equivalent but contain only operators that our sys-
tem can support, which are a) any SQL queries on a sin-
gle database that produce a noisy count or a multiset;
b) BN-PSI-CA; and c) DCR. Figure 4 shows the lan-
guage that can be supported natively. DJoin uses a num-
ber of rewrite rules to perform this transformation. The
most interesting rules are shown in Table 1; some triv-
ial rules, e.g., for transforming boolean predicates, have
been omitted.
Local selects: We try to perform as many operations as
possible locally at each database, e.g., via rule R1 for
selects that involve only columns from one database.
Disjunctions: We use basic boolean transformations to
move any disjunctions in the join predicates to the out-
ermost level, where they can be replaced by set unions
using rule R2, or split off using rule R3.
Unions: Rule R4 (which is basically De Morgan’s law)
replaces all the set unions with additions, subtractions,
and set intersections.
Inequalities: Rule R5 replaces the 6= operators with an
equality test and a subtraction; rule R6 encodes integer
comparisons as a sum of equalities. Both rules assume
that there is a nearby equality test for matching rows.

query := cardex | cardex + cardex |
cardex - cardex

cardex := |setex ∩ setex {∩ setex}∗|
setex := πfields(sigmaex) | sigmaex
sigmaex := σlocal predicate(db) | db

Figure 4: DJoin’s intermediate language.

Equalities: Once all non-local operations in the join
predicates are conjunctions of equality tests, we can use
rule R7 to reduce these to a single equality test, simply
by concatenating the relevant columns in each database
(with appropriate padding to separate columns).
Joins: Once a join cardinality has only one equality test
left, rule R8 replaces it with an intersection cardinality.

5.3 Result: Three-tier query plan

If the rewriting process has completed successfully, the
rewritten query should now conform to our intermediate
language from Figure 4, which implies a three-tier struc-
ture: the first tier (sigmaex and setex) consists of lo-
cal selections and projections that involve only a single
database; the second tier (cardex) consists of set inter-
section cardinalities, and the third tier (query) consists
of arithmetic operations applied to cardinalities. We re-
fer to the rewritten query as a query plan. Figure 3(b)
shows a query plan for the query from Figure 3(a) as an
illustration.

A query plan with this three-tier structure can be ex-
ecuted in a privacy-preserving way. The first tier can be
evaluated using classical database operations on the in-
dividual databases; the second tier can be evaluated us-
ing BN-PSI-CA (Section 4.2 and 4.3), and the third tier
can be evaluated using DCR (Section 4.4 and 4.5).

5.4 Limitations

DJoin has only two distributed operators: BN-PSI-CA
and DCR. If a query cannot be rewritten into a query
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plan that uses only those operators (and some purely lo-
cal ones), it cannot be supported by DJoin. For instance,
DJoin currently cannot process the query

SELECT COUNT(A.id) FROM A,B,C
WHERE ((A.x*B.y)<C.z)

because we know of no efficient way to rewrite the pred-
icate into set intersections. Rewriting is generally dif-
ficult for predicates that involve computations across
fields from multiple databases. The predicates DJoin
can support include 1) predicates that use only fields
from a single database, 2) equality tests between fields
from different databases, and 3) conjunctions and dis-
junctions of such predicates. In addition, DJoin supports
operators for which it has an explicit rewrite rule, such
as inequalities and numeric comparisons (rules R5 and
R6). We do not claim that we have found all possible
rewrite rules; if rules for additional operators are discov-
ered, DJoin could be extended to support them as well.

DJoin is currently limited to counting queries: it does
not support sum queries, or queries with non-numeric
results. Differential privacy can in principle support
such queries, e.g., via the exponential mechanism [24],
but we have not yet found a way to express them in terms
of set intersections.

6 DJoin design

In this section, we present the design of DJoin, our
system for processing distributed differentially-private
queries using the mechanisms explained so far.

6.1 Assumptions
Our design is based on the following assumptions:

1. All queriers know the schema and a rough upper
bound on the total size of each curator’s database.

2. The curators are “honest but curious”, i.e., they will
learn whatever information they can, but they will
not deviate from the protocol.

3. Each curator has a “privacy budget” that represents
to amount of private information he or she is will-
ing to release through queries.

4. The curators can authenticate each querier.

Assumption 1 is necessary to make BN-PSI-CA and
query planning work. Assumption 2 is not inherent (PSI-
CA can work in an adversarial model [17]) but helps
with efficiency and does not seem unreasonable in prac-
tice. Assumption 3 is common for differentially private
query processors [16, 23, 32], and assumption 4 can be
satisfied, e.g., using cryptographic signatures.

6.2 Overview and roadmap
DJoin consists of a number of servers, which run on the
curators’ machines, as well as at least one client, which
runs the querier’s machine and communicates with the
servers to execute queries. Each server has a privacy
budget (Section 6.3) and a local database with a schema
(Section 6.4) that is known to all clients and servers.

Users can interact with DJoin by issuing a query q and
a requested accuracy level ν to their local client. (ν is the
parameter of the Laplace distribution from which DCR
will draw the final noise term.) The user’s client attempts
to rewrite the query according to the rules from Sec-
tion 5.2. If this succeeds, the result is a different query
q′ that is equivalent to q but can be executed entirely
with local queries, BN-PSI-CA, and DCR. The client
then submits the query to the servers, and each server
performs an analysis (Section 6.5) to determine the sen-
sitivity S(q,dbi) of the query q in that server’s local data
dbi. In combination with the accuracy level ν , the sensi-
tivity yields the privacy cost εi that this server will incur
for answering the query.

Next, the client then uses a distributed commit proto-
col (Section 6.6) to assign an identifier to the query and
to ensure that all the servers agree which query is being
executed. Once the query is committed, the servers ex-
ecute the query in three stages (Section 6.7): first, each
server completes any subqueries that involve only its lo-
cal database; next, the servers jointly complete each of
the BN-PSI-CA operations; and finally, the servers ex-
ecute DCR to combine and re-noise their results. The
overall result is then revealed to the client.

6.3 Privacy budget
Each server maintains three pieces of local information:
A local database, a privacy budget, and a table of pend-
ing queries, which is initially empty.

The privacy budget is essentially an upper bound on
the amount of private information about any individ-
ual that the curator owning the server is willing to re-
lease through answering queries. It is well known [7]
that, if q1 and q2 are two queries that are ε1- and ε2-
differentially private, respectively, the sequential com-
position of both is (ε1 + ε2)-differentially private. Be-
cause of this, servers can simply deduct each query’s
“privacy cost” from the budget separately, without hav-
ing to remember previous queries. A similar construc-
tion is used in other differentially private query proces-
sors, including PINQ [23], Airavat [32], and Fuzz [16].
In the appendix, we briefly sketch a possible approach
to choosing the privacy budget.

Recall from Section 4 that DJoin must charge the pri-
vacy budget both for intermediate results from BN-PSI-
CA operations and for the final result that is revealed by
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DCR. To avoid confusion, we use the symbol εp to de-
note the cost of a BN-PSI-CA operation and εr to denote
the cost of the final result. The total cost of a query with
several BN-PSI-CAs is thus εr +∑ j εp, j.

6.4 Schemata and multiplicities
The local database is a relational database that can be
maintained in a classical, non-distributed DBMS, e.g.,
mySQL. For simplicity, we will assume that the data
from each individual user is collected in a single row
of the database; if this is not the case already, a nor-
malization step (e.g., a GROUP BY) must be performed
first. The database schema may assign an arbitrary type
τ(c) to each column c; however, to make our sensitivity
analysis work, we additionally allow each column to be
annotated with a multiplicity m(c) that indicates how of-
ten any individual value can appear in that column (for
instance, m(c) = 1 indicates a column of unique keys).
If no annotation is present, DJoin assumes m(c) = ∞.

Multiplicities are important to determine an upper
bound on sensitivity of a query. Recall from Section 3.2
that the sensitivity S(q,dbi) of a counting query q in a
database dbi is the largest number of rows that a change
to a single row in D can cause to be added or removed
from the result of q. For instance, consider the query

SELECT COUNT(A.x) FROM A,B
WHERE A.x=B.y

If the multiplicities are m(A.x) = 3 and m(B.y) = 5, then
a change to a single row in A can add at most five rows
to the result – hence, whatever the new value of A.x is,
we know that B can contain at most five rows whose
y-column matches that value. (The argument for disap-
pearing rows is analogous.) Conversely, the query’s sen-
sitivity in B is three because at most three rows in A can
have the value B.y in column x. Note that processing
such queries as intersections requires an extra encoding
step; see the appendix for details.

Clearly, the use of a column with unbounded multi-
plicity can cause the sensitivity to become unbounded
as well. However, it is safe to use such columns in con-
junction with others; for instance, the query

SELECT COUNT(A.x) FROM A,B
WHERE A.x=B.y AND A.p=B.q

has sensitivity 5 in A even if m(A.p) = m(B.q) = ∞.
It may seem tempting to let DJoin choose the mul-

tiplicity itself, based on how often elements actually
occur in the database. However, this would create a
side channel: queriers could learn private facts about
the database by observing, e.g., how much is deducted
from the privacy budget after running certain queries.
To avoid this problem, DJoin follows the approach
from [16] and determines the multiplicity statically,
without looking at the data.

6.5 Sensitivity analysis

We now describe how to infer the sensitivity of more
complex queries, and specifically on the question how
much the number of rows output by a query σpred(db1 ./
· · · ./ dbk) can change if a single row in one of the dbi
is changed.

To explain the intuition behind our analysis, we begin
with a few simple examples:

1. A ./ B ./C
2. σA.x=B.y(A ./ B ./C)

3. σA.x=B.y∧ B.y=C.z(A ./ B ./C)

4. σA.x=B.y∧ A.p=B.q(A ./ B ./C)

5. σA.x=B.y∧ B.y=C.z∧ A.x=C.q(A ./ B ./C)

Since query (1) has no predicates, its sensitivity in A is
simply |B| · |C|. The addition of the constraint A.x = B.y
changes the sensitivity to m(B.y) · |C|, since each row
in A can now join with at most m(B.y) rows in B; sim-
ilarly, adding B.y = C.z in query (3) reduces the sensi-
tivity to m(B.y) ·m(C.z). When there is a conjunction
of multiple constraints between the same databases, the
most selective one ‘wins’; hence, the sensitivity of query
(4) is min(m(B.y),m(B.q)) · |C|. When there are multiple
‘join paths’, the most restrictive one wins. For instance,
in query (5), the third constraint reduces the sensitivity
in A only if m(C.q) < m(B.y) ·m(C.z); otherwise, the
sensitivity is the same as for query (3).

To solve this problem in the general case, we adapt
a classical algorithm from the database literature [18]
that was originally intended for query optimization in
the presence of joins. This algorithm builds a join graph
G that contains a vertex for each database that partic-
ipates in the join, and a directed edge between each
pair (db1,db2) of vertices that is initially annotated with
|db2|, the size of the database db2. We then consider
each of the predicates in turn and update the edges.
Specifically, for each predicate dbi. f1 = db j. f2 with
dbi 6= db j, we change the annotation wi, j on the edge
(dbi,db j) to min(wi, j,m(db j. f2)) and, correspondingly,
the annotation w j,i on (db j,dbi) to min(w j,i,m(dbi. f1)).
Then we can obtain an upper bound on the sensitivity
S(q,dbi) of q in some database dbi by finding the min-
cost spanning tree that is rooted at dbi, using the product
of the edge annotations as the cost function.

If the predicate contains disjunctions, we can rewrite
it into DNF and then add up the sensitivity bounds. This
is sound because σp∨q(X) = σp(X)

⋃
σq(X). If a row

is removed from X and the sensitivities of p and q are
sp and sq, this can change the cardinalities of the two
sets by at most sp and sq, and thus the cardinality of the
union by at most sp + sq. The same approach also works
for unions of subqueries.
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6.6 Distributed commit
Next, we describe how the client submits the query to
the servers. It is important to ensure that the servers
agree on which query they are executing; without this, a
malicious client could trick a server into believing that
it is executing a low-sensitivity query, and thus cause an
insufficient amount of noise to be added to the result.
Note that there is no need to agree on an ordering be-
cause all queries are read-only.

When the client accepts a query q with requested
noise level ν from the user, it first calculates the sensitiv-
ity of q and the corresponding ε; then it tries to rewrite
q into an equivalent query q′ that uses only the language
from Figure 4. If this succeeds, the client chooses a ran-
dom identifier I and sends a signed PREPARE(I,q,q′,ν)
message to each server. What follows is essentially a
variant of the classical two-phase commit protocol.

Upon receiving the PREPARE message, the server at
each Ci verifies that q can be rewritten into q′, and that
it does not already have a pending query with identifier
I. If either test fails, the server responds with a NAK im-
mediately. Otherwise, Ci’s server calculates its privacy
cost εi := εr,i +∑ j εp,i j that it would incur by execut-
ing its part of q′. This cost consists of the base cost
εr,i := S(q,dbi)/ν , which depends on the query’s sen-
sitivity in Ci’s local data, and an additional charge εp,i j
for each PSI-CA operation that Ci must participate in to
execute q′. If Ci’s privacy budget can cover εi, its server
deducts εi from the budget, adds (I,q′,ν ,εi) to its pend-
ing table, and sends a signed response ACK(I, q, q′, ν)
back to the client. Otherwise, the server responds with a
NAK. This might occur, for instance, if the sensitivity of
q is too high or the requested noise level ν is too low.

If the client receives at least one NAK, it sends a signed
ABORT(I) message to each server that has responded
with an ACK, which causes the reserved parts of the pri-
vacy budget to be released. Otherwise the client com-
bines the received ACK messages to form a certificate
Γ, and it sends COMMIT(I,Γ) to the servers. The servers
verify that all required ACKs are present; if so, they begin
executing the query.

6.7 Query execution
Each query is executed in three stages. First, upon re-
ceiving the COMMIT message, the server at each Ci com-
putes the parts of the query that require only data from
its local database dbi. For some queries, this will yield
part of the result directly (e.g., in |σx=0(A)

⋃
σx=1(B)|),

but more typically the first stage will produce a number
of sets on each server that will be used as inputs in the
second stage.

The second stage consists of a number of BN-PSI-CA
instances. Since all servers agree on the query q′, each
server can independently determine which BN-PSI-CA

instances it should be involved in, and what role in the
protocol it should play in each instance. Ties are bro-
ken deterministically, and the instances are numbered in
order to distinguish different instances that involve the
same set of servers. At the end of the second stage, each
server has learned a number of noised results and/or
noise terms, which are used as inputs to the third stage.

The third stage consists of an invocation of DCR,
which de-noises the results from the second stage, com-
bines them as required by q′, and then re-noises the com-
bined result using the protocol from Section 4.4. Recall
that the re-noising requires an additional input from each
server that must be chosen uniformly at random. At the
end of the third stage, each server learns the result of
the multi-party computation and forwards it back to the
client, which displays it to the user.

7 Evaluation
In this section, we report results from an experimental
evaluation of DJoin. Our goal is to show that 1) DJoin is
powerful enough to support useful queries; and that 2)
DJoin’s communication and computation overheads are
low enough to be practical.

7.1 Prototype implementation
We have built a prototype implementation of DJoin
for our experiments. Our prototype uses mySQL to
store each curator’s data and to execute the purely lo-
cal parts of each query, and it relies on FairplayMP [4]
to execute the secure multi-party computation. We im-
plemented the two-party BN-PSI-CA primitive from
Section 4.2, based on the thep library [35] for the
Paillier cryptosystem. Our implementation includes the
optimizations from [14] that were already briefly de-
scribed in Section 4.1, including the use of bucket
hashing to replace the single high-degree polynomial P
with a number of lower-degree polynomials. This re-
duces BN-PSI-CA’s O(|S1| · |S2|) time complexity to
O(|S1|+ |S2| ln ln |S1|) and makes it highly paralleliz-
able, with synchronization required only for the few el-
ements that hash to the same bucket. Our prototype also
supports multi-party BN-PSI-CA based on the proto-
col from Kissner and Song [17] and the UTD Paillier
Threshold Encryption Toolbox [36], but we do not in-
clude multi-party results here due to lack of space.

We also built a query planner that implements the
rewrite rules from Section 5.2, as well as a backend for
FairplayMP that outputs code for DCR (Section 4.5). To
our knowledge, DCR is the first implementation of the
shared noise generation algorithm described in [10]. Al-
together, our prototype consists of 3,560 lines of Java
code for the runtime engine, 249 lines of code in Fair-
playMP’s custom language for the DCR primitive, and
6,776 lines of C++ code for the query planner.
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Figure 5: Computation time for PSI-CA. The time is ap-
proximately linear in the number of set elements.

7.2 Experimental setup
For our experiments, we used five Dell PowerEdge R410
machines, each with a Xeon E5530 2.4 GHz CPU,
12 GB of memory, and four 250 GB SATA disks. The
machines were connected by Gbit Ethernet. Following
the recommendations in [5], we used 1,024-bit keys for
the Paillier cryptosystem. We chose εr = 0.0212 to en-
sure that the noise for a query with sensitivity s = 1 is
within ±100 with probability 95%; we set εp = 1/8 ·εr,
and we chose δ = 1/N = 6.67 ·10−5.

Our experiments use synthetic data rather than ‘real’
confidential data because our cryptographic primitives
operate on hashes of the data anyway, so the actual con-
tent has no influence on the overall performance. There-
fore, we generated synthetic databases. Each database
had N = 15,000 rows.

7.3 Microbenchmarks: BN-PSI-CA
First, we quantified the cost of our two main crypto-
graphic primitives. To measure the cost of BN-PSI-CA,
we generated two random sets with N elements each,
and we ran two-party BN-PSI-CA on them, varying N
between 1,000 and 32,000 elements. We measured the
computation time on each party and the amount of traf-
fic that was exchanged between the two parties.

Figure 5 shows the time taken by the servers at C1 and
C2, respectively, to execute BN-PSI-CA using a single
core. The time increases almost linearly with the size
of the sets; recall from Section 7.1 that the optimiza-
tions we applied reduce the computational overhead to
O(|S1|+ |S2| ln ln |S1|). Note that the two servers cannot
run in parallel; the total runtime is the sum of the two
servers’ runtimes. Most of the computation is performed
by C1: 49% of the total time was spent constructing the
polynomials at C1; 29% of the time was spent evaluat-
ing the polynomials at C2; and the remaining 21% were
spent decrypting the resulting evaluations at C1.

Figure 6 shows the total amount of traffic sent by C1
and C2. The traffic is roughly proportional to the set
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Figure 6: Network traffic sent by the two parties in a
BN-PSI-CA run.

sizes. For large sets, approximately 70% of the traffic
consists of polynomials sent from C1 to C2, and the re-
maining 30% consists of evaluation results sent back to
C1 for decryption.

To quantify BN-PSI-CA’s scalability in the number of
cores, we performed a 15,000-element intersection with
one, two, and four cores. (This was done on a differ-
ent machine with a 2.67 GHz Intel X3450 CPU, since
our E5530s have only two cores.) The additional cores
resulted in speedups of 1.99 and 3.98, respectively. This
is expected because BN-PSI-CA is trivially scalable: en-
cryptions, polynomial construction, evaluations, and de-
cryptions can all proceed in parallel on multiple cores,
or even multiple machines. Thus, DJoin should be able
to handle databases much larger than 32,000 elements,
as long as the computation can be spread over a suffi-
cient number of machines.

7.4 Microbenchmarks: DCR
Next, we quantified the cost of the DCR operator. Re-
call from Section 4.4 that DCR internally consists of two
stages: first, the inputs (cardinalities and inverted noise
terms) from the various servers are added together, and
then a new noise term is drawn from a Laplace distribu-
tion and added to the result. To separate the two stages,
we measured the time to execute DCR twice, with and
without the second stage, and we varied the number of
parties from two to four.

Figure 7 shows our results. The times grow superlin-
early with the number of parties ([4] reports a quadratic
dependency) but are all below 20 seconds. Although
MPC is generally expensive, DJoin performs most of its
work using a specialized primitive (BN-PSI-CA), so the
functionality that remains for DCR to perform is fairly
simple. Note that neither the size nor the number of sets
affect DCR’s runtime because each server inputs just a
single number: the sum of all the cardinalities and noise
terms it has computed.
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Query #PSI-CA

Q1
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.y

1|(πx(A)
⋂

πy(B)) |

Q2
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.x AND (A.y!=B.y)

2|(πx(A)
⋂

πx(B)) |− |(πx,y(A)
⋂

πx,y(B)) |

Q3
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.y AND (A.z="x" OR B.p="y")

2|(πx(A)
⋂

πy(σp=”y”(B))) |+ |(πx(σz=”x”(A))
⋂

πy(σp6=”y”(B))) |

Q4
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x=B.x OR A.y=B.y

3|(πx(A)
⋂

πx(B)) |+ |(πy(A)
⋂

πy(B)) |− |(πx,y(A)
⋂

πx,y(B)) |

Q5
SELECT NOISY COUNT(A.x) FROM A,B WHERE A.x LIKE "%xyz%" AND A.w=B.w

8AND (B.y+B.z>10) AND (A.y>B.y)
∑i=0..7 |(πw,(y>>i+1)(σ(x like ’%xyz%’)∧(y&2i= 1)(A))

⋂
πw,(y>>i+1)(σ((y+z)>10)∧(y&2i=0)(B))) |

Table 2: Example queries and the corresponding query plans. The number of BN-PSI-CA operations, which is a rough
measure for the complexity of the query, is shown on the right.
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Figure 7: Computation time for DCR with and without
the renoising step.

7.5 Example queries

To demonstrate that DJoin can execute nontrivial and
potentially useful queries, we chose five example
queries, which are shown in Table 2 along with the query
plan they are rewritten into. Each query illustrates a dif-
ferent aspect of DJoin’s capabilities:

• Q1 is an example of a basic join between two
databases, which is transformed into a PSI-CA us-
ing rule R8.

• Q2 adds an inequality, which is rewritten as a dif-
ference between two intersections via rule R5.

• Q3 contains a disjunction with two local predi-
cates, which can be split using rule R3.

• Q4 contains another disjunction, but with remote
predicates; this is rewritten via rule R2.

• Q5 contains an equality and a numeric comparison
between columns in different databases, which can
be split via rule R6, as well as several other predi-
cates that can be evaluated locally.
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Figure 8: Total query execution time for each of the ex-
ample queries from Table 2.

For Q5, the y column in both databases contained num-
bers between 0 and 255. The table also shows the num-
ber of BN-PSI-CA operations in each query plan, which
(in conjunction with the set sizes) is a rough measure
of the effort it takes to evaluate it. The more complex
a query is, the more BN-PSI-CAs it requires. Q1 is the
least complex query because it translates straight into a
BN-PSI-CA; Q5 is the most complex one because the
inequality requires one intersection per bit.

7.6 Query execution cost

To quantify the end-to-end cost of DJoin, we ran each
of our five example queries over a synthetic dataset of
15,000 rows per database, and we measured the com-
pletion time and the overall amount of network traffic
that was sent.

Figures 8 and 9 show our results. The simplest query
(Q1) took 58 minutes, and the most complex query (Q5)
took 448 minutes, or slightly less than seven and a half
hours; the traffic was between 42.7 MB and 340 MB.
Both metrics should scale roughly linearly with the size
of the sets and the number of set intersections in the
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Figure 9: Total network traffic for each of the example
queries from Table 2.

query, and a comparison with our microbenchmarks
from Section 7.3 confirms this.

The completion times are much higher than the
completion times one would expect from a traditional
DBMS, but recall that DJoin is not meant for inter-
active use, but rather for occasional analysis tasks or
research studies. For those purposes, an hour or two
should be acceptable. Also, recall that the best previ-
ously known method for executing such queries is gen-
eral MPC, which is impractical at this scale.

To illustrate how much DJoin improves performance
over straightforward MPC, we implemented our sim-
plest query (Q1) directly in FairplayMP. A version for
two databases of just eight (!) rows had 9,700 gates and
took 40 seconds to run; we were unable to test larger
databases because this produced crashes in FairplayMP.
The runtimes we observed increased quadratically with
the number of rows, which suggests that this approach
is not realistic for the database sizes we consider.

8 Conclusion

In this paper, we have introduced two new primitives,
BN-PSI-CA and DCR, that can be used to answer
queries over distributed databases with differential pri-
vacy guarantees, and we have presented a system called
DJoin that can execute SQL-style queries using these
two primitives. Unlike prior solutions, DJoin is not re-
stricted to horizontally partitioned databases; it supports
queries that join databases from different curators to-
gether. The key insight behind DJoin is that many dis-
tributed join queries can be rewritten in terms of oper-
ations on multisets. Not all SQL queries can be trans-
formed in this way, but many can, including counting
queries with conjunctions and disjunctions of equality
tests, as well as certain inequalities.

DJoin is not fast enough for interactive use, but, to
the best of our knowledge, the only known alternative
for distributed differentially private join queries is se-

cure multi-party computation, which is orders of magni-
tude slower. Also, most of the computational cost is due
to BN-PSI-CA, which is trivially scalable and can thus
benefit from additional cores.
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Appendix

Choosing ε: The choice of ε is essentially a social ques-
tion and beyond the scope of this paper; however, we
briefly sketch one possible approach. Suppose Alice is
considering whether or not to allow her data to be in-
cluded in a database that can later be queried via DJoin,
and suppose she is concerned that an adversary might
then be able to learn a certain fact about her – for in-
stance, that she has cancer. From Alice’s perspective,
the worst-case scenario is that the adversary 1) already
knows all the data in the database (!), except Alice’s,
that he 2) manages to get access to DJoin, and that he
3) burns the entire privacy budget on a single query q –
say, “how many people in the database have cancer?”.

Consider the situation from the adversary’s perspec-
tive. Since we have (very conservatively) assumed that
the adversary already knows all the data except Alice’s,
he can construct two “possible worlds”: one database
b1 where Alice has cancer, and another database b2
where she does not. He does not know whether the real
database is b1 or b2, but he can compute the conditional
probability Pi := P(q(db) = r |db = bi) that q will re-
turn r if the real database is bi. Thus, once he observes
the actual result, he can use Bayes’ formula to update
his belief that Alice has cancer.

Now recall that, according to the definition of differ-
ential privacy from Section 3.2, P1/P2 is bounded by eε .
Thus, ε controls how much more confident the adver-
sary can become about Alice’s cancer status. If Alice is
comfortable with P1/P2 ≤ 2, she can accept values of ε

up to ln2≈ 0.69. If a benign querier wants to ask queries
with sensitivity s= 1 and ∑ j εp, j = εr on a database with
100,000 entries and have c = 95% confidence that the
error due to noise is less than E = 1,000 (1%), we have

Nmax =
εmax ·λmax

2 · s
=

εmax ·E
−2 · s · ln(1− c)

≈ 115

In other words, a privacy budget of εmax = 0.69 would
be enough to answer up to 115 queries of this type.

Multiset encodings: In some instances, it is nec-
essary to encode the input sets before they can be
processed as intersections. For instance, if the under-
lying PSI-CA primitive supports sets but not multi-
sets, we can encode an element e that appears n times
as {e||1, . . . ,e||n}, with each element included only
once [17]. Another example are joins with multiplicities
greater than one. Suppose two curators want to evalu-
ate |σx(A) ./ σy(B)|, and A.x and B.y contain nA and
nB copies of some element e, respectively. Then A’s
curator can add, ∀1≤ k≤m(B.y), k · nA encoded ele-
ments e||nA||k, and B’s curator can add, ∀1≤k≤m(A.x),
k ·nB elements e||k||nB. The intersection then consists of
nA ·nB encoded elements e||nA||nB.
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