DNA: Dynamic Resource Allocation for Soft
Real-Time Multicore Systems

Robert Gifford Neeraj Gandhi

Linh Thi Xuan Phan

Andreas Haeberlen

University of Pennsylvania
Email: {rgif, ngandhi3, linhphan, ahae} @cis.upenn.edu

Abstract—Modern latency-sensitive and real-time systems of-
ten use multi-core platforms; thus, tasks on different cores share
certain hardware resources, such as the memory bus and certain
cache levels. This has two undesirable consequences: (1) tasks
can interfere with each other, causing high latency for the
system as a whole, and (2) it becomes difficult to meet deadlines,
since the worst-case timing of a given task depends on all the
tasks it might have to compete with. Static partitioning isolates
tasks from each other by allocating a certain fraction of the
resources to each; however, many tasks execute in different phases
(e.g., memory-intensive and CPU-intensive) that have different
requirements. Thus, system designers are left with a choice
between overprovisioning, based on the most demanding phase,
or suboptimal performance.

In this paper, we propose a pair of techniques, called DNA
and DADNA, to address the above challenge. DNA increases
throughput and decreases latency, by building an execution
profile of each task to identify the phases, and then dynamically
allocating resources based on which task can benefit the most;
DADNA further adds support for soft real-time workloads by
taking deadlines into account. We have built a prototype of both
techniques in the Xen hypervisor; our experimental results show
that, compared to a state-of-the-art solution, DNA and DADNA
can substantially improve schedulability, reduce job deadline miss
ratios, and cut latencies by more than a factor of two even in
extremely overloaded situations.

I. INTRODUCTION

Today, multiple cores are a common feature of both desktop and
embedded CPUs, and latency-sensitive and real-time systems
are taking advantage of them to support their increasingly
complex workloads. This is mostly a good thing, since having
multiple cores means better performance. However, this trend
also creates some new challenges because the cores are not
independent — they share certain hardware resources, including
the memory bus and certain cache levels. Thus, tasks on
different cores can influence each other’s runtime.

Consider, for instance, a system whose workload includes
the following two kinds of tasks: (1) a control task, which
multiplies a vector with a large matrix and then uses the result
to make a complicated control decision, and (2) a stream-
processing task, which computes a filter and then applies the
filter to a stream of sensor inputs. (Both matrix multiplication
and filter are basic functions in many real-time control systems.)
Matrix multiplication is memory-intensive; on a single-core
CPU, it can be fast if the matrix is already in the cache, or
fairly slow if the matrix needs to be fetched from main memory.
But on a multi-core CPU, it can be even slower if other cores
happen to generate heavy traffic on the memory bus at the time

the matrix needs to be fetched — for instance, if the stream-
processing task happens to read the data stream at the exact
same time. If this kind of interference happens unexpectedly,
it can cause increased latencies and deadline misses.

One way to do better is to statically partition the resources
(memory bandwidth and cache capacity) between the cores.
For instance, MemGuard [77] regulates the memory bandwidth
each core can use by counting memory accesses using hardware
performance counters, and by interrupting workloads when a
specific limit is reached; similarly, Intel’s Cache Allocation
Technology (CAT) [28] can restrict cores to a certain subset
of the available cache partitions. These techniques can be used
to prevent interference and to isolate the cores from each
other. In our example, if the matrix-multiplication task and the
stream-processing task run on different cores, we can allocate
most of the last-level cache to the control task, since matrix
multiplication benefits from caching but stream processing does
not (and would in fact thrash the working set of the control
task), and we can split the memory bandwidth between the two
tasks, to make their execution times more predictable. It is well
known that different kinds of tasks can extract different benefits
from resources (see, e.g., the animalistic taxonomy from [68]),
and this approach has been used for static partitioning [69].

However, static partitioning is still very conservative and
often fails to fully utilize the available resources. The reason is
its assumption that neither the set of tasks nor the characteristics
of these tasks can change over time. In practice, the set of tasks
often does change: for instance, the controller on a car might
launch a new task when the driver enables cruise control, and
stop it again when the driver switches back to manual mode.

More importantly, the characteristics of the tasks themselves
can change as well! To see why, consider again our earlier
example. During the matrix multiplication, the control task
heavily depends on memory bandwidth, and we can speed it
up considerably by allocating more bandwidth to it. However,
computing the actual control decision afterwards is much
less memory-intensive; during this time, it would be better
to allocate most of the bandwidth to the stream-processing
task. In other words, tasks can have different phases during their
execution [56], and these phases can differ in their resource
demands. Because of this, a static allocation — perhaps based
on the demands of the worst phase, or on the average demand
across phases — almost inevitably leads to suboptimal utilization
and/or higher response times.

In this paper, we present a pair of resource allocation



techniques, Dynamic Allocation (DNA) and deadline-aware
DNA (DADNA), that allocate memory bandwidth and cache
capacity while explicitly taking the phases into account. Both
techniques consist of two parts. The first is an offline profiler
that runs each task with different combinations of resources
to build an execution profile — essentially a function that
maps different points in the task to the rate of progress (i.e.,
instructions retired per unit time) at that point. For instance, the
profiler might find that the control task’s matrix multiplication
runs at 10° instructions/s if it can have the entire cache and
the entire memory bus, but only at 10% instructions/s if it
is restricted to 10% of the memory bus, and only at 107
instructions/s if it is additionally restricted to 50% of the cache
(because of thrashing).

As a next step, the profiler then uses a simple machine-
learning technique (clustering) to identify phases with similar
behavior. This saves space — since we only need to store the
phases and not the entire, detailed execution profile — and, more
importantly, it identifies potential decision points at which it
may make sense to adjust the resource allocation at runtime.
The sequence of phases depends not only on the program but
also on the resources the task has been allocated: for instance,
memory-intensive phases can disappear when the tasks are
given more cache space, or they can move around when cache
partitions of different sizes cause different conflict patterns.

The second part of DNA/DADNA is a resource allocator that
uses the collected execution profiles to dynamically reassign
resources at runtime. Somewhat analogous to Antfarm [46],
which dynamically allocates network bandwidth to BitTorrent
swarms, our allocator gives memory bandwidth and cache
capacity to the tasks that can benefit the most. Thus, in
the above example, the control task would get most of the
cache, since it benefits heavily from caching but the stream-
processing task does not, and it would initially get most of the
memory bandwidth, but only until the matrix has been loaded
into the cache; after that, much of the bandwidth would be
reallocated to the stream-processing task. The deadline-aware
variant (DADNA) is additionally able to allocate resources not
only based on the immediate needs of a task but also based
on the slack time of current and future deadlines.

We have built a prototype implementation of DNA and
DADNA in the Xen hypervisor [3] by modifying Xen’s existing
Real-Time Deferrable Server (RTDS) scheduler [50], and we
report results from an experimental evaluation on real hardware.
Our results show that DNA and DADNA incur only small
run-time overhead, and that they can substantially improve
schedulability, reduce deadline miss ratios, and cut latencies by
more than a factor of two compared to a state-of-the-art solution.
In summary, this paper makes the following contributions:

« the concept of phase-aware allocation (Section III);

« a phase-based task model (Section IV);

« the DNA resource allocation technique (Section V);

e DADNA, a deadline-aware variant of DNA (Section VI);
« a prototype implementation in Xen (Section VII); and

« an experimental evaluation (Section VIII).

II. RELATED WORK

Sharing-aware analysis: One way to achieve timing guar-
antees in the presence of shared resources is to factor the
sharing-related overhead into the timing analysis, as is done
for memory, e.g., in [52], [51], [53], [30], [75], [15], and for
caches, e.g., in [67]. However, without isolation, it is difficult
to obtain tight bounds because one generally has no choice but
to assume worst-case interference from other tasks or cores,
which leads to a high latency overhead.
Resource partitioning: Another approach is to explicitly
divide up the shared resources among the cores or tasks, and
to strictly enforce this allocation at runtime. For memory band-
width, hardware-based techniques, such as [79], [24], [25], [22],
[36], can provide fine-grained control, but they are not available
in most commodity processors; software-based solutions, such
as [77], [78], [1], [76], typically leverage existing hardware
features, such as the processor’s performance monitoring unit.
On the cache side, software-only approaches — such as page
coloring [31], [40], [73] or compiler-based [43] techniques — are
more limited, but fortunately, modern processors increasingly
have explicit support for cache partitioning, e.g., in the form of
Intel’s CAT [28] or the Lockdown-by-Master (LbM) technology
in ARM processors [2]. These techniques enforce a given
allocation but cannot decide how to best allocate the resources
among the tasks, which is the focus of the present paper.
However, we rely on two of them — MemGuard [77] and
Intel’s CAT — to enforce DNA’s and DADNA’s allocations
(see Section III-A for additional details).
Multiple resources: The solution we propose is able to
1) support latency-sensitive and soft real-time workloads, 2)
take into account the intertwined relationship among three
different resources (CPU, cache space, and memory bandwidth),
and 3) consider the dynamic behavior of the workload, in the
form of phases. There are several prior systems that can provide
some subset of these properties, but, to our knowledge, there
is none that can provide all three. Several systems are able to
allocate more than one resource at the same time; for instance,
[38] allocates cache space and memory banks; DRF [21]
allocates CPU and memory; Quasar [17] allocates nodes, cores,
memory, and storage; and [6], [65], [35], [54], [61], [44]
allocate cache space and memory bandwidth. However, these
systems focus on throughput (or, in the case of CoPart [44]
and DRF [21], on fairness) and do not consider worst-case
latencies or deadlines. Other systems do consider timing
constraints but their resource allocations only take into account
various combinations of fwo resources — such as CPU and
memory bandwidth [72], [1], [45], [41], or cache and memory
banks [63], [33], [32], [11] — but not all three. We are aware
of only two systems, MARACAS [74] and CaM/C2M [70],
[69], that can both support real-time workloads and consider
all three resources, but both systems use static allocations and
do not change the allocation based on dynamic behavior (i.e.,
the execution phases).

Prior work has considered dynamic allocation, but focuses
primarily on individual resources. For instance, [62] changes



allocations based on marginal gain, but a) it focuses on
HPC workloads without deadlines, and b) it measures the
marginal gain at runtime, using counters, which works fine
for one resource but would be difficult for, e.g., both memory
bandwidth and cache. vCAT[71] introduces an abstraction for
virtualizing Intel’s CAT and a way to control it at runtime,
but requires the programmer to manually insert system calls
at phase boundaries to adjust the partitions; in contrast, our
solution finds the phases without developer input, and it uses
DNA/DADNA to make allocation decisions automatically.
Program types and phases: The insight that programs can
have different interactions with resources is not new; previous
work has classified the behavior using different colors [37],
based on marginal utility [47], using miss models [9], via
analytical modeling [4], or with animal types [68]. Zhuravlev et
al. [80] compared some of these schemes and designed a (non-
real-time) scheduling algorithm that uses them. Other work has
used dependencies between resource usage and program inputs
for scheduling, e.g., to save energy [20], [26]. The observation
that the same program can go through different phases goes
back to a paper by Sherwood and Calder [56], and since then,
a number of techniques for identifying the phases have been
developed, including ones based on k-means clustering [58],
threshold clustering [18], [19], [59], visual inspection [14],
pattern matching [34], [55], or wavelets [12], [13], [27], [55].
DNA and DADNA could leverage these techniques instead of
the approach we used in our prototype (see Section IV). Phase-
based workload characterization has also been exploited to build
accurate energy models [23] and execution time prediction [49].
To our knowledge, however, DADNA is the first algorithm to
use phases for the multicore resource allocation of latency-
sensitive and real-time workloads.

III. OVERVIEW

We assume that the system consists of a set of tasks that
execute on a shared multi-core platform, with a shared cache
and a shared memory bus that are accessible by all cores.
As in existing work, the set of tasks that can potentially
run on the system is known before the system is launched.
This is necessary because our approach involves some offline
profiling to identify the phases and their resource requirements
(Section IV). However, the set of tasks that are actually running
on the system can change over time (e.g., in multi-mode
systems [10]). We assume that the tasks are short and typically
perform similar operations on similar inputs, which is true in
most real-time systems where each task periodically executes a
control function on streams of sensor inputs. This assumption
allows us to use a relatively simple method to identify the
phases (Section IV) but is not fundamental; if the tasks are
more complex, there are other ways to find phases (e.g., [57])
that can be used instead.

We focus on latency-sensitive and soft real-time systems
(though it should be possible to extend our solution to hard
real-time systems). For soft real-time systems, we assume
that deadline misses are acceptable, and jobs that miss
their deadlines are allowed to continue their executions until

completion. Our goals are 1) to reduce average, tail, and worst-
case latencies, and 2) to minimize job deadline miss ratios
when tasks have (soft) deadlines.

A. Background: CAT and MemGuard

Intel’s Cache Allocation Technology [28] is a hardware feature
that is present in newer Intel CPUs; it allows the hypervisor
to control how the shared last-level cache (LLC) is allocated
between the physical cores. CAT divides the shared cache
into NV equal-size partitions (e.g., N = 20 on our evaluation
machine), which can be allocated to one of several classes of
service (COS). For each COS, there is a model-specific register
with a bitmask — the capacity bitmask, or CBM - that controls
which partition(s) should be used; for each logical core, there
is another register (PQR) that specifies the COS for this core.
CAT enforces the property that all new cache allocations from
a logical core are made only in cache partitions specified in
the CBM of that core’s COS. For instance, if we set bits 0..3
in the bitmask for COS 1, and then set the PQR register for
core #5 to 1, new cache allocations from core #5 will be made
in one of the first four cache partitions.

MemGuard [77] is a software-based mechanism for enforcing
per-core limits on memory bandwidth consumption. It uses the
CPU’s performance counters to count the LLC misses on each
core; since memory bandwidth is consumed in response to LLC
misses, this number is a good proxy for memory bandwidth
consumption. Each core and/or each task can be assigned
a memory bandwidth budget, and MemGuard periodically
configures each core’s counters so that they will generate
an interrupt if the core’s LLC misses exceed the budget for
that period; if this interrupt is received, it throttles the core, or
switches to a different task. In this paper, we use MemGuard to
assign memory bandwidth in small, discrete partitions, just like
CAT. (We could enforce limits at the granularity of a single
LLC miss, but small differences in the bandwidth usually do
not cause big differences in performance, and the small number
of partitions helps us keep the number of configurations small.)

B. Case study: Setup

Since our approach is based on the fact that tasks often go
through different phases with different resource requirements,
we ran an experiment to illustrate this, and to show which
phases exist in a typical workload. Specifically, the workloads
we examined were the PARSEC [5] and SPLASH2x [66], [60]
benchmark suites, which have often been used as workloads
by prior work in this area [31], [30], [71], [64], [69], [70].
To get a platform where we could vary both the cache and
memory bandwidth allocations, we used a Xen modification
from our earlier work [69] that already supports MemGuard.
We extended it to additionally support Intel’s CAT. We ran
the modified Xen on a CAT-capable Intel Xeon E5-2683 v4
processor with 16 cores and a 40MB 20-way set-associative
L3 cache that is shared among the cores. (Each core has its
own L1 and L2 caches.) This processor has 16 COS registers
and supports 20 L3 cache partitions. The machine also had
three single-channel 16GB PC-2400 DDR4 DRAMs. Using the



= |nsn Retirement Rate

Cache Requests

Cache Misses

%107 ] %107 2 x107 2
0 7] 4 7]
") 2 ") 2 ") 2
£ 4 = £ 15 = £ =
0 Ly LY
= o o
w3 7} 7}
£ £ 10 £
-] ° s 2 ﬂ
g2 g o |
k7] @ 05 T
e 1 < [ !n
H* ** H*
o | 0.0 b ol I U . P T .
0.0 25 50 7.5 10.0 12.5 15.0 17.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 0.0 25 5.0 7.5 100 12.5 150 17.5
Total Retired Insns (x108) Total Retired Insns (x108) Total Retired Insns (x108)
(a) £ft (2 cache, 2 bandwidth). (b) canneal (2 cache, 2 bandwidth). (c) fluidanimate (2 cache, 2 bandwidth).
%107 3 *x107 3 %107 g
a a a a
") 2 ("] 2 ") 2
€ 4 s £ 15 = £ =
n n n
s = s 3
w3 @ 7]
£ £ 10 £ W
2 | 1
3 3 3 il ol
@ @ o5 T | |
€ 1 < < ]
#* X #* # i
0 : . A 0.0 s : bt :
0.0 25 50 7.5 100 12.5 15.0 17.5 0.0 2.5 50 7.5 10.0 12.5 15.0 17.5 0.0 255 5.0 7.5 10.0 12.5 15.0 17.5

Total Retired Insns (x108)

(d) ££t (18 cache, 18 bandwidth).

Total Retired Insns (x108)

(e) canneal (18 cache, 18 bandwidth).

Total Retired Insns (x108)

(f) fluidanimate (18 cache, 18 bw.).

Fig. 1: Execution patterns for three benchmark tasks under two different resource allocations: two cache and two bandwidth
partitions (top row), and 18 cache and 18 bandwidth partitions (bottom row). Each point on the horizontal axes represents a
particular point in a program, identified by the number of instructions since that program was started, and the lines show the
behavior of the program at that point: its execution speed (blue) and the rate of cache requests (orange) and cache misses (red).

method in [78], we measured a maximum guaranteed bandwidth
of 1.4 GB/s, which we divided into 20 partitions of 70MB/s
each. This is lower than the peak bandwidth that the platform
supports, but it results in better isolation between the cores.
To avoid nondeterministic timing, we disabled hyperthreading,
SpeedStep, and hardware prefetching.

To collect data for a given benchmark task and a given
cache/bandwidth allocation, we booted the Xen hypervisor with
its built-in RTDS real-time scheduler [50] and then launched
one guest VM running LITMUS®7 [7] (a real-time OS) with
two VCPUs that were each pinned to a dedicated core; one to
run essential guest OS tasks and the other to run our benchmark
in isolation. We then ran the benchmark task on this VCPU,
synchronized its release with the VCPU’s release (as in [69]),
and we measured three performance metrics, using the CPU’s
performance counters: (i) the total number of cache requests,
including both hits and misses; (ii) the number of cache misses,
as an indication of the traffic on the memory bus; and (iii)
the number of retired instructions. For each configuration of
cache and memory bandwidth resources, we took a set of
measurements every A milliseconds and collected the sets of
measurements for 100 runs. (We used A = 5ms, as it was
small enough to capture fine-grained changes in resource use
patterns for our workloads, without creating too much noise.)

C. Case study: Results

Figure 1 shows our results for three representative benchmark
tasks — the £ft program from SPLASH2x, which performs
signal processing, and the canneal and fluidanimate
programs from PARSEC, which perform simulated annealing
and fluid dynamics for animation purposes, respectively — as
well as for two different resource allocations: one in which

resources are scarce and the task is given only two (10%) of
the 20 available cache and memory bandwidth partitions (top
row), and another in which resources are plentiful and the task
is given 18 (90%) of the 20 partitions (bottom row). Each
graph shows three curves: the blue one shows the number of
instructions retired in the preceding Sms window, the orange
one is the number of cache requests, and the red one is the
number of cache misses, which corresponds to memory traffic.
The horizontal axes identify particular points in each program:
for instance, the £ £t program executes about 9-108 instructions,
so the lines in both Figures 1(a) and (d) end at that point; the
speed (blue line) is roughly comparable during the first 4 - 103
instructions, but the rest of the program runs much faster when
more cache and bandwidth partitions are available.

A look at the top row of Figure 1 shows evidence that
different execution phases do exist: for instance, £ £t has three
clearly separated phases, of which the first shows quick progress
and almost no cache misses (due to high locality), while the
other two show slower progress (but at different rates!) and very
high miss rates. f1uidanimate shows a cyclic behavior with
three alternating phases that vary substantially in the number
of cache accesses, and canneal has one long phase, followed
by a much shorter one. This leads to our first finding:

Finding 1. A rask’s resource usage patterns vary throughout
its execution and can be broadly divided into phases, where
each phase exhibits a distinct cache and memory bandwidth
resource demands.

Our next observation is that, while each of the three tasks
does exhibit different phases, both the number and the char-
acteristics of the phases are quite different: in £ft, there are
three large phases, with rates of execution changing little within



a phase but substantially between phases; fluidanimate
has a sequence of shorter phases, including some brief spikes;
canneal has some variation within its long first phase; etc.
This leads to our second finding:

Finding 2. The number of phases and resource demand
patterns in each phase are different across different programs.

A third observation is that spikes in the orange and red
curves (cache and memory bandwidth) generally correspond to
dips in the blue curve (progress). This should not be surprising:
the more often a task needs to access the cache and/or main
memory in a given phase, the slower it will be. Conversely,
we can generally expect to speed up a task by giving it more
space in the cache or more memory bandwidth. (There are
exceptions — e.g., when a task’s working set already fits into
the allocated cache space, as well as some unusual cases we
discuss below.) We summarize this in our third finding:

Finding 3. The execution rate in each phase is closely related
to the resource demands in that phase: more cache misses or
cache requests tend to lower the execution rate, and fewer
requests tend to increase it.

So far, we have focused mostly on the top row of Figure 1.
We now compare the top row (scarce resources) to the bottom
row (plentiful resources); notice that the horizontal axis is
the number of instructions retired, so the same horizontal
point in the two rows corresponds to the same point in the
execution. Notice how some phases change their characteristics
substantially (e.g., the third phase of fft, which now has
no more cache misses and runs much faster), while others
change little, if at all (e.g., the phases of fluidanimate,
which have fewer cache misses but run at pretty much the
same speed). This is expected: once the resource demands of
a phase are satisfied, increasing the allocation further should
not have much of an impact on the rate of execution.

To reinforce this point, Fig-
ure 2 shows how the overall
execution time of canneal
changes as we vary the num-
ber of cache and memory-
bandwidth partitions it can
use. (For simplicity, we use
the same number of partitions
for both.) Once the number
of partitions reaches a certain
threshold (around 5), further
allocations do not change the
execution time very much. This leads to our final observation:

N

Execution Time (s)
= N W h U O N

3 5 7 9 11 13 15 17 19
Num. Cache/BW Partitions

Fig. 2: Runtime for canneal
for different allocations.

Finding 4. Allocating extra cache and memory bandwidth
resources to a task can help improve its execution time, but
only up to a certain number of partitions.

In this section, we have focused on the typical behavior we
have seen in our experiments. However, we have also noticed a
number of atypical events. For instance, new phases can appear,
or existing ones disappear, as the resource allocation is changed

— e.g., because a larger cache allocation can, in combination
with certain cache replacement strategies, cause a form of
thrashing. Also, while Figure 2 shows “smooth” changes in
runtime as the allocations are changed, this behavior is not
universal; sometimes there is a threshold effect where thrashing
persists until a certain cache allocation is reached, but then
disappears abruptly. This will become important in Section V.

IV. DNA: PHASE GENERATION

Next, we describe how, based on the findings from the previous
section, we build a model that captures the phases of a given
task, along with their resource requirements.

A. What is a phase?

Since the resource allocation algorithm will need to make
decisions based on a task’s current phase, we need a way to
quickly tell, from the “outside”, which phase a given task
is currently in. The instruction pointer is not a good option
for this — partly because of loops, but also because the same
function can be invoked from different contexts. For instance,
amatrixMultiply function could be compute-bound when
invoked with a small matrix, and memory-bound when invoked
with a large one.

Because of this, we use the number of retired instructions
to estimate what part of the program is executing, and we
define a phase to be a range of instructions — for instance, a
phase could last from the 10,000th instruction to the 15,000th
one. The number of retired instructions can be easily measured
using the performance counter on Intel CPUs, and many other
CPUs have a similar counter.

This definition is not precise: for instance, the count could
be widely off if a task does busy waiting, if it is invoked with
inputs of different sizes, or if the control flow varies widely
depending on the inputs. However, for real-time systems, this
approach is plausible because they often involve periodic tasks
that perform the same operations again and again, on similar
inputs. (For instance, the operations might be reading data from
a particular sensor, filtering data, or making a control decision.)
Small variations in the control flow are not problematic because
we do not need to change the resource allocation precisely at
a particular instruction, but rather when the task is entering a
certain (long) phase, so all we really need is an approximate
point.

For more complex workloads, this simple approach would
not work, but there are other, more sophisticated techniques in
the literature (e.g., basic-block vectors [57]) that could be used
instead. (Precisely how the phases are delimited is somewhat
orthogonal to our work; our main focus is resource allocation.)

B. Step #1: Profiling

At a high level, the DNA algorithm aims to allocate resources
to the task(s) that will “benefit the most” from them — that is,
the tasks whose rate of execution will increase the most. To do
this, it needs to know, for a given task and a given instruction
count within that task, what the rate of execution would be if



Cache + BW time slice index
allocation 1 2 3 4 -

(1 cache, 1BW)[ 01, (02, |01, [0,y com-
(2 cache, 1 BW)| 0%, | 02, | 03, | o3, Clustering . pression
(1 cache, 28W)| 0}, | o, |0t | of, TP )
(2 cache, 2 BW)| 0}, |03, | O3, | O3,

(a) Observation for time slice k under
c cache partitions and b BW partitions:
« = #cache requests, #cache misses
O¢, = { = #instructions retired
= (instruction begin, instruction end)

(b) Each observation is
assigned a label
(i.e., cluster index)

(c) Adjacent observations
with the same label
are combined

Freqmine GMM 20 Clusters

25
- . 20 X107

2

G W l“; s Retred
.0 C!
000 ot st

Fig. 3: Phase generation process for a single task (left) and clusters generated for the fregmine task (right).

the task were allocated a certain set of resources. We obtain
this information through profiling.

The profiling process is the same as the one from our case
study (Section III-B). The first step is to set up a carefully
controlled environment in which 1) tasks can be run without
interfering with other tasks, and in which 2) we can control the
resources that each task has access to. In our experiments, we
profile the tasks one by one, on a dedicated CPU core that no
other task may access, and we disable all other workloads and
all nonessential OS features, to prevent resource consumption
by other, unrelated tasks; we also use CAT and MemGuard
to control the number of cache partitions and the memory
bandwidth the task has available to it.

Next, we run each task in this environment for N = 100
runs per resource allocation configuration (there are 400 con-
figurations in total). In each run, for every A = 5 milliseconds,
we collect (1) the number of instructions completed; (2) the
number of L3 cache requests (hits + misses); and (3) the number
of L3 cache misses. This information can be easily gathered
from the hardware performance counters on Intel CPUs, and
similar counters are present on many other processors.

Finally, we replace each measurement with the delta over
the measurement before it — that is, the number of instructions
completed, cache requests made, and cache misses since the last
measurement. We refer to each set of deltas as an observation;
intuitively, an observation describes the activity of a task during
a given A window. Together, the observations from the different
runs form a matrix that is illustrated in Figure 3(a).

C. Step #2: Clustering

The next step is to automatically identify groups of observations
that show similar behavior. This step could be done using a
variety of clustering techniques; for our prototype, we used
expectation-maximization (EM) [42], in combination with a
Gaussian Mixture Model (GMM) [48], on a three-dimensional
feature space (since each observation contains three metrics). A
GMM model simply contains k£ Gaussian distributions, and the
EM technique discovers a mean and a covariance for each that
are a good fit for the specific data set. The process is somewhat
similar to the classical k-means clustering: EM produces, for
each observation, a posterior probability that the observation
belongs to each of the k Gaussians, then it updates the mean
and covariance for each Gaussian to the maximum-likelihood

values for the associated observations, and it repeats these steps
until convergence.

As is usually the case with clustering, the correct value
of k is not known a priori, but we can generate clusterings
with a range of different values for £ (2 < k < 30 in our
experiments) and then evaluate their output quality using the
Davies-Bouldin index [16] and the Calinski-Harabasz index [8].
(The two metrics differ in how they weigh cluster density and
separation.) We use the clustering with the highest quality; if
multiple clusterings have the same quality, we use the one with
the largest k (i.e., the most phases) among those to provide
more fine-grained knowledge of the resource needs of the task.

As an illustration, the right side of Figure 3 shows the
clustering for the fregmine task, with different colors
representing different clusters.

D. Step #3: Identifying phases

The final step is to identify the phases. Recall that we need
the phases to serve two purposes: they are a more compact
representation of the (very verbose) profiling data, and they
identify possible decision points for DNA and DADNA, where
it “makes sense” to potentially change the resource allocation.

Finding phases in the original profiling data would be difficult
because the observations usually are all different, and it is not
clear which differences are significant. However, once we
replace each observation with the label of the cluster it belongs
to, we typically find long sequences of identical labels. (This
is illustrated in Figure 3(b); recall that each row represents
a run with a different set of resources.) We can then simply
collapse each contiguous sequence into a single phase, keeping
track only of 1) the instruction where the phase began, 2) the
instruction where the phase ended, and 3) the average rate of
execution (instructions executed per unit time) during the phase.
The result is illustrated in Figure 3(c). This is the information
the DNA and DADNA algorithms need.

V. DNA: RESOURCE ALLOCATION

In this section, we describe how DNA performs resource
allocation. DNA is agnostic to deadlines and merely optimizes
for overall system throughput and latencies. A deadline-aware
version, DADNA, is presented in the next section.



Algorithm 1 The DNA algorithm

: function ALLOCATECACHEPARTITIONS(T, d¢)
c[7] = c[7] + dc
rem_c = rem_c — 0c

1
2
3
4:
5: function ALLOCATEMEMORYBANDWIDTH(7, 0b)
6 b[7] = b[r] + b

7 rem_b = rem_b — 0b

8:

9: function GIVERESOURCETO(7)

10 c_gain = 0(t,1(7), c[7], b[7], rem_c, 0)

11: b_gain = 6(t,i(7), c[7], b[7], 0, rem_b)

12: if b_gain < c_gain then

13: ALLOCATECACHEPARTITION(T,1)

14: else

15: ALLOCATEMEMORYBANDWIDTH(T,1)

16:

17: function DNA(T, ) > 7 running tasks, 4: instr. completed
18: rem_c = C > Max cache partitions
19: rem_b = BW > Max mem bandwidth partitions
20:

21: /* Assign initial resources */

22: for € T do

23: c[r]=b[r] =0

24: ALLOCATECACHEPARTITIONS(T, min_c)

25: ALLOCATEMEMORYBANDWIDTH(T, min_b)

26:

27: /* Iteratively refine allocations */

28: while rem_c > 0 || rem_b > 0 do

29: 7 = argmax_{0(7,i(7),c[7],b[],rem_c,rem_b)}

30: GIVERESOURCESTO(T)

31: return (c, b) > ¢,b map cache/bw partitions to tasks

A. Invocation and output

The purpose of DNA is to find an allocation of (cache and
memory bandwidth) resources to cores, so as to maximize
the total rate of execution for the entire system. DNA itself
does not perform scheduling; it is designed to be used in
combination with an existing scheduler. At the point DNA
is invoked, the scheduler has already picked a task for each
core to run, and DNA allocates resources to these running
tasks. In our prototype, the scheduler is partitioned Earliest
Deadline First (EDF), but other schedulers can be used as well.
In principle, a single, more complex algorithm could make both
decisions simultaneously; we do not consider this approach
here, but it could be an interesting direction for future work.

DNA is deterministic, that is, given the same mapping of
tasks to cores and the same parameters about the current phases,
it will output the same resource allocation. Thus, it generally
makes no sense to invoke it again unless there is a change in
one of the two. In other words, DNA should run if either (a)
the scheduler has changed the task on at least one core, or (b)
one of the running tasks encounters a phase transition for any
resource allocation.

The last point is a bit subtle; it is related to the observation
from Section III-C that the same task can go through different
phases if given different resource allocations. For instance,
suppose a task has just finished a (memory-bound) matrix
multiplication and now begins a (compute-bound) cryptographic

signature, and consider the scenarios where the task is either
given a large number of cache partitions L or a small number S.
If the task had L partitions before, it might not have generated
any memory traffic during the multiplication, and its overall
rate of execution might not change much at the transition point;
however, with only S partitions, its rate of execution would
have been low before and would be high now. Because of
this, DNA should run again at the transition point even if the
task currently has L partitions and is still in the middle of its
current phase — simply because there is another allocation (S)
that would exhibit a phase transition, and because it may now
make sense to switch to S partitions and allocate the remaining
L-S partitions to another task.

DNA outputs a mapping of cache and memory bandwidth
partitions to tasks. This mapping can then be enforced by the
OS or hypervisor, e.g., with CAT and MemGuard.

B. Algorithm

In principle, a good resource allocation could be found using
a form of multidimensional bin packing. However, this kind of
computation is expensive and would generate a high overhead,
especially since, as discussed above, DNA needs to run
frequently. Because of this, we instead opt for a heuristic
that can be evaluated quickly.

Algorithm 1 shows the algorithm for DNA. As a first
approximation, DNA is a greedy heuristic: it starts by giving
only the minimal allocation to each running task (lines 21-25)
and then iteratively assigns an additional cache or bandwidth
partition to the running task that can “benefit the most” — in
other words, the task whose rate of execution would increase
the most on average, relative to the allocation it has so far
(lines 27-30). Intuitively, the function 6(t,i(7),c,b,dc, 6b)
is the “gradient” in the rate of execution of a task 7, after
executing 7 instructions, when adding dc cache allocations and
0b bandwidth allocations. € can be thought of as the sensitivity
of 7 to a change in its resource allocation. # can be computed
from the data that is gathered during profiling.

However, this simple approach would not work very well
by itself. The reason is that some tasks benefit very little from
extra resources, unless and until they reach an allocation of
a certain size (say, enough cache partitions to fit their entire
working set) but at that point the benefit could be very large. If
DNA made decisions based on only the local gradient — that is,
the benefit from getting one extra cache or memory bandwidth
allocation — it might never be able to reach the large benefit,
since it would always seem that allocating one extra resource
makes little difference.

To avoid this, we use a slightly different definition of 6§ that
takes larger increases into account as well. Let p(7,14,c¢,b) be
the rate of execution of 7 after ¢ instructions, using c cache
partitions and b bandwidth partitions. Then we define 6 as:

dc ob

1
9(T7iac7 ba 607 6b):m E E p(T,i,C-i—j, b+k)_p(7-7i7c7 b)
Cq
j=0k=0

where dc and &b represent the amount of remaining available
resources on the system to be assigned.



In other words, 6 represents the average increase in the
rate of execution when adding up fo §c cache partitions and
up to 0b bandwidth partitions. This is the function used in
line 29 of Algorithm 1. After a resource has been assigned,
dc or db will decrement by 1 and thus the task’s sensitivity to
more resources will update to be realistic with the amount of
resources it can still receive. Notice that, in practice, we do not
explicitly record 0; instead, 6 can be computed efficiently from
the (compact) phase information we derived in Section IV.

There is one final complication, which has to do with the
fact that Algorithm 1 allocates the resources one by one, rather
than in larger increments. Once DNA has picked, in line 29,
a task to give additional resources, it must still decide which
resource (cache partition or memory bandwidth partition) to
allocate. We make this decision by comparing, in line 12, the
marginal improvement each resource provides.

VI. DEADLINE-AWARE DNA

In this section, we present an extension of DNA, called
DADNA, for soft real-time workloads that aims to minimize
deadline misses (in addition to improving latencies).

A. Basic operation

Once tasks have deadlines, it is no longer enough to just allocate
resources to the tasks that “benefit the most”, in terms of rate
of execution; we sometimes need to allocate extra resources to
certain tasks just to enable them to finish before their deadlines.
In other words, the optimization function becomes the total
rate of execution, subject to the constraint that all tasks should
meet their deadlines.

Algorithm 2 shows how DADNA achieves this goal. (Func-
tions that were already defined in Algorithm 1 have been
omitted for brevity.) The beginning is similar to DNA: in
lines 13-20, we begin again by allocating the minimum
resources to each task. However, we now also extrapolate,
using a function called TIMELEFT, for how much time each
task 7 would still need to finish, if given only this minimum
allocation, and we compare this time to the slack S(7) — that
is, the amount of time 7 has left before its next deadline. If
the task cannot finish in time, it gets added to a set prio and
will be prioritized during the rest of the algorithm. The only
exception, in line 19, is for tasks that cannot finish in time at
all, even if given all the available resources. These tasks would
use up all the resources if they were added to prio.

Next, in lines 22-27, the DADNA algorithm allocates
resources to the tasks in prio, starting at the task with the
“greatest need” (that is, the greatest difference between its
projected completion and its deadline). Once a task has enough
resources to finish before the deadline, it is removed from the
prio set. If there are resources left over when the set is empty,
DADNA allocates them in the same way as DNA, by giving
them to the tasks that can benefit the most (lines 29-32).

B. Virtual deadlines

So far, we have considered only the tasks that are currently
running on the available cores. If the core scheduler is EDF,

Algorithm 2 The DADNA algorithm

1: function TIMELEFT(T, c, b)
2: p={z|P(7,¢,b).start < i(r) < P(r,¢,b).end}
3: left = (P(7,¢,b).end —i(7))/P(1,¢,b).p

4: for each j with p < j < maxPeriod(7, ¢, b) do

5: left += (P(7,c,b).end — P(7,c,b).start) / P(T,c,b).p
6 return left

7

8

: function DADNA(T, i, S)
9: rem_c =C
10: rem_b = BW
11: prio =

> S(7): Slack of 7
> Max cache partitions
> Max mem bandwidth partitions

12:

13: /* Assign initial resources */

14: for 7 € T do

15: c[r]=b[r] =0

16: ALLOCATECACHEPARTITIONS(T, min_c)

17: ALLOCATEMEMORYBANDWIDTH(7, min_b)
18: if TIMELEFT(7,c[7],b[7]) > S(7) then

19: if TIMELEFT(7,rem_c,rem_b) < S(7) then
20: prio = prio U {7}

21:

22: /* Help tasks meet their deadlines */
23: while (rem_c > 0 || rem_b > 0) A (prio # () do

24: 7 = argmax_{TIMELEFT(T, c[7],b[7]) — S(7)}
25: GIVERESOURCESTO(T)

26: if TIMELEFT(7,c[7],b[7]) < S(7) then

27: prio = prio \ {7}

28:

29: /* Iteratively refine allocations */

30: while rem_c >0 || rem_b > 0 do

31: 7 = argmax_{0(7,i(7),c[7],b[T],rem_c,rem_b)}
32: GIVERESOURCESTO(T)

33: return (c, b) > c,b map cache/bw partitions to tasks

virtual deadline of T, Do
Task 7 start(r,,) = D,, — WCET,,
virtual deadline of 7, start(r;) = min{start(;+1),D;}
Task 7, WCET, | ~WCET;, V1<i<n
) D; | = |
latest start time of i = mi T
Task 7 T WeET; virtualDL(7y) = min{start(;), Do}
D : " "
current time latest start time of 7, : Virtual deadline computation

Fig. 4: Virtual deadline illustration and computation.

these will be the tasks whose deadlines are currently the closest.
However, by allocating resources to these tasks based only on
how much they need to finish in time, we are potentially
harming other tasks that are in the ready queue and are not
currently running.

The left picture of Figure 4 illustrates the problem. Here,
task 7y has the earliest deadline and will currently be running.
But if 7 is given just enough resources to finish by its deadline
Dy, tasks 7 and 79, which have deadlines shortly thereafter,
will be doomed: if they start to run at Dy, there is simply not
enough time left to finish both by D5, let alone D;.

To fix this problem, we use a variant of an old trick: virtual
deadlines. At a high level, this works as follows. We begin with
the task in the ready queue that has the largest deadline (72 in
our example) and compute the latest point in time at which this
task would need to be started in order to finish by its deadline,
assuming it is given the maximum possible resource allocation.
If the next-highest deadline (71’s, in our example) is after that



point, we replace it with a virfual deadline at that point. We
then repeat this process with the earlier deadlines, until we
arrive at a (possibly virtual) deadline for the currently running
task 79. In other words, we (recursively) compute the virtual
deadlines as shown in Figure 4, where 7,, denotes the task in
the ready queue with the highest deadline, and D; and WCET;
denote the absolute deadline and the worst-case execution time
of 7; under the maximum possible resource allocation. These
virtual deadlines can then be used to compute the slack S for
DADNA, as before. (By definition, the virtual deadline of the
running task should be recomputed whenever a new job with
a larger absolute deadline is released on the same core.)

Note that the virtual deadlines are a heuristic that boosts

tasks that are urgent, and they are internal to DADNA only
(i.e., the CPU scheduler never sees them).
Remarks: Like all existing multicore resource allocation
algorithms (that we aware of), our algorithms are not optimal;
there are cases where a schedule is theoretically possible,
but DNA/DADNA will not find it. However, our experimental
results suggest that DNA and DADNA work substantially better
than the state-of-the-art technique in terms of schedulability,
deadline miss ratios, and average/tail/worst-case latencies. Our
experiments use DNA/DADNA with partitioned EDF, but
DNA/DADNA should work with any CPU scheduler (though
the benefits could vary).

In this work, we focus on reducing latencies and minimizing
job deadline miss ratios; however, with a schedulability test,
our solution can be adapted to hard real-time systems as well.
Since DNA/DADNA is deterministic, one way to obtain a
simple schedulability analysis for periodic tasks is to run
DNA/DADNA for an entire hyperperiod, and to assume that, in
each phase, each task runs for the maximum time we observed
for that phase during profiling. A closed-form analysis would
not be trivial, because the execution time depends on the
allocated resources, but should still be possible.

VII. PROTOTYPE IMPLEMENTATION

To evaluate our solution and to show that it can be integrated
into a practical run-time system, we built a prototype of our
solution on top of the Xen hypervisor. In this section, we
describe some key aspects of this prototype.

Partitioning mechanisms: For partitioning the cache and
the memory bandwidth, we built on top of a patch to Xen
4.8 from our earlier work [69]. This patch contains support
for the MemGuard [77] technique, and we extended it to
additionally support Intel’s CAT. As discussed in Section III-B,
we artificially partition MemGuard’s (continuous) memory
bandwidth limits into fixed-size “partitions”, whose number is
equal to the number of cache partitions.

Soft-real-time support: We further extended Xen’s RTDS
scheduler to enable multiple instances of a VCPU to co-exist
in the run queue. This is necessary to support soft real-time
systems, where jobs may execute beyond their deadlines.

Thread support: Our current prototype is restricted to single-
threaded workloads. This is not inherent; the reason is simply

that our phase characterization (Section IV-A), which is based
on the number of retired instructions, works best if the programs
are deterministic. However, we could use deterministic multi-
threading — e.g., Dthreads [39] — to add thread support without
losing this property (and with comparable performance), or we
could use a different way to identify where a phase begins and
where it ends.

Phase generation: Our prototype includes the phase genera-
tion technique from Section IV. To collect observations, we
extended Xen’s RTDS scheduler with a configurable timer, and
we added a timer handler that recorded three CPU performance
counters every A = 5 ms. (Note that profiling is done one task
at a time, so EDF scheduling is not necessary.) As discussed in
Section IV-B, we set up the performance counters to track, on
each core, (i) the number of instructions retired, (ii) the total
number of L3 cache requests, and (iii) the number of L3 cache
misses. To prevent interference from the hypervisor itself, we
configured the performance counters to prevent counting at the
hypervisor’s privilege level.

DNA/DADNA with partitioned EDF: We implemented
DNA/DADNA in our extended Xen’s RTDS scheduler. The
scheduler uses partitioned EDF scheduling, where tasks are
restricted to a specific core, as it has smaller run-time overhead.
We use worst-fit bin packing to assign tasks to cores (though
other bin-packing algorithms can also be used). This has
the effect of simplifying the virtual-deadline calculation for
DADNA, since the number of tasks that can run on a given
core and must be considered in this calculation is typically
small. Overall, our implementation consists of approximately
960 lines of code for DNA and an additional 200 for the
extension to consider deadlines in DADNA. For simplicity, our
implementation of DADNA made one small simplification to
Algorithm 2: instead of using the TimeLeft function, which
estimates the remaining time based on the current and future
phases, our code extrapolates based on just the current phase.
This sometimes causes DADNA to make suboptimal decisions,
so our results in Section VIII are slightly conservative.

Thrashing avoidance: To avoid cache thrashing, we set the
minimum number of cache partitions a task can receive to
min_c = 3. We also take care to minimize the number of
cache partitions that need to be reallocated when an allocation
changes. This is not trivial because Intel’s CAT requires each
core to have a contiguous range of partitions [29, §17.19.2]:
for instance, a core can get partitions #5—10, but not partitions
#4—6 and #8-10. Fortunately, DNA gives us some flexibility
because it only assigns each task a certain number of cache
partitions, without specifying which ones. Thus, we can use the
following simple heuristic to allocate contiguous ranges: core
#0’s range always starts at partition #0, the last core’s range
always ends at the last partition, and the ranges in between are
ordered by core number. For instance, if there are four cores
and DNA assigns (7,6,4,3) partitions to the tasks on these cores,
the cores will get ranges #0-6, #7—12, #13-16, and #17-19.
Thus, if DNA next assigns (6,7,4,3), we can simply reassign
partition #6 from core #0 to core #1. Hypothetically, #14-19,



#0-6, #7-10, and #11-13 could also be used, but this would
involve reassigning every single partition to a different core.

Decision points: For ease of implementation, our
DNA/DADNA prototype made one simplification: instead of
running precisely at phase boundaries of the scheduled task,
we run DNA/DADNA (i) periodically at 1ms intervals and (ii)
whenever a new task is scheduled onto a core. This choice
adds a small performance penalty, since DNA/DADNA may
run more often than strictly necessary, and since a task may
need to wait for a few microseconds after a phase change
before its allocation changes accordingly, but we do not expect
these costs to be significant. When DNA returns an allocation
that is different from the current one, we update MemGuard’s
bandwidth limits directly from within the hypervisor, and we
use the wrmsr instruction to update the bitmasks in the COS
registers with the new mapping of cache partitions to cores.

VIII. EXPERIMENTAL EVALUATION

To evaluate our solution, we performed an experimental
evaluation using our prototype. Our key questions were: (1)
What is the run-time overhead of DNA/DADNA? And (2) Can
DNA and DADNA indeed improve latency, job miss ratio and
schedulability, compared to a state-of-the-art solution?

A. Experimental setup

Baseline: We compared DADNA and DNA to vC2M [69],
a state-of-the-art resource allocation technique that supports
real-time workloads and can handle both cache partitions and
memory bandwidth, but cannot take phases into account. vC2M
is an extension of [70], which has already been shown to
substantially outperform systems without resource management,
so we omit a “free-for-all” baseline in which the tasks compete
for resources without any constraints. vC?>M takes the WCETs
for each task in the workload as an input; once tasks have been
assigned to cores, it statically assigns a number of cache and
memory bandwidth partitions to each core, so as to maximize
resource utilization while meeting the deadlines, but without
considering in detail the behavior of the tasks. vC2M comes
with a schedulability analysis and is thus able to support both
soft real-time and hard real-time workloads; here, we focus on
the former, since DNA and DADNA support only soft real-time
workloads.

Workload: Since resource allocation techniques need to work
for a wide variety of workloads, it is customary to evaluate them
with synthetic workloads, so that a large part of the design space
can be covered. Following the approach from [69], we randomly
pick our tasks from a widely used multithreaded benchmark
suite; however, while [69] considered only PARSEC [5], we
also use tasks from SPLASH2x [60], to get a somewhat
larger variety. Both benchmark suites support a single-threaded
execution mode, which we used. We profiled the tasks as
described in Section III-B, using the simsmall input type,
and we extracted the phase information as discussed in
Section IV; the profiling step also yields the WCET for each
resource allocation, which is required by vC?M, as well as a
reference WCET, which is the task’s WCET when it is allocated

the entire cache and the entire memory bus. We picked the
tasks’ utilizations uniformly at random from [0.1, 0.4], and we
set the period (deadline) of each task to be its reference WCET
divided by its utilization.! We generated task sets with taskset
utilizations ranging between 1.0 and 3.8, at steps of 0.2. Notice
that these utilizations are calculated using reference WCETs
as well, i.e., on the assumption that each task can have the
entire cache and memory bus to itself, when in practice the
tasks have to share. Because of this, a utilization of 2.6 on four
cores is already heavy and a utilization of 3.0 fully overloads
the system (as they would correspond to a utilization of 3.6
and 4.1, respectively, if we assumed the cache and memory
bandwidth were divided evenly among the cores). For each
taskset utilization, we generated 15 independent tasksets, for a
total of 225 tasksets.

Platform: We ran the generated workloads on the machine
described in Section III-B, using the exact same platform setup.
Each task was pinned to its own dedicated VCPU, which in
turn was pinned to one of four cores that was selected by
worst-fit bin packing. A fifth core was reserved for running
essential OS services.

Experiments: For each taskset, we released jobs during a two-
minute interval and ran them until completion under each of
the three algorithm settings, and we collected the response
times of all jobs (that is, the interval from the instant the job
is released until the instant it is completed).

B. Run-time overhead

Both DNA and DADNA must run frequently, so they can
respond quickly to phase changes and task additions or
terminations. Thus, it is important that they can run quickly and
do not add a significant overhead. In general, DNA’s overhead
depends on the number of cores, while DADNA’s overhead
depends on the number of tasks per core. To examine the cost,
we performed the following experiment: we used Xen’s time
interface to measure the duration of each DNA or DADNA run;
this includes both the time to run the algorithms themselves
and the time to change the cache and/or bandwidth allocations.

Table I shows our results. On average, both algorithms take
about 16us to run, so, if they are invoked every millisecond,
the overhead is about 1.6%. (Notice that our implementation is
unoptimized, and that the overhead could be further reduced by
running DNA/DADNA only at phase change points, rather than
periodically, as discussed in Section VII.) The 99" percentile
and the maximum are higher. This is because adjusting resource
allocations is expensive: changes to both the COS registers
and the performance counters involve writing a model-specific
register, which can take thousands of cycles on our platform.
Normally, there are few changes, so these costs add at most
a few microseconds, but in rare cases, most or all of the
allocations have to be changed, which results in a higher
cost. Overall, the run-time overhead of DNA/DADNA is

'We also evaluated the algorithms using tasksets with bimodal utilization
distributions, and the results were consistent with that of tasksets with uniform
distributions. Due to space constraints, we omit the details.



wn
2
2 1.0/ = § VvC2M m— vCZM
ﬁ — DNA 80 NsN DNA
g 0.81 == 1 DADNA wwr. DADNA
5o
= —_
. ¥ 60 A
g 06] o <
< * 9
2 * <
© 0.44 PS 2 404
@ N ©
Y -
o v . 3
02 o« Y 204
S ¢ o X x
- * =uw - m
= 0.0 o aN o
Y
“ 10 14 18 22 26 30 34 38 Lo 14 18 26 30 34 38 ol m

Workload Utilization

Workload Utilization

(a) Schedulability.

(b) Job miss ratio.

Average 99.99thperc. Worst-case

(c) Latency.

Fig. 5: Performance of DNA, DADNA, and vCZM across all workloads.

1.01 m m vc2m munt 1.01 m m vc?M . 1.01 m m vc?m =
m— DNA P s® — DNA m— DNA
- . - -
0.8 DADNA A 0.8 DADNA 0.8 DADNA
2 ¢ 2 2
'E 0.6 .'I E 0.6 ‘E 0.6
S & S ]
@ 0.4 » @ 0.4 @ 0.4
a y a [-%
0.2 0.2 0.2
0.0 0.0 0.0
102 1071 100 10t 102 10t 10° 10t 1072 10t 10° 10t

Latency / Deadline

(a) Workload utilization 1.4.

Latency / Deadline

(b) Workload utilization 2.0.

Latency / Deadline

(c) Workload utilization 2.6.

Fig. 6: CDF of normalized latencies.

| Average 99" Percentile Maximum
DNA 16.07us 46.11pus 103.44us
DADNA | 16.36us 46.48 s 110.23us

TABLE I: Run-time cost of DNA and DADNA.

reasonably small, and this overhead is already factored into their
performance benefits reported in the following subsections.

C. Schedulability and deadline miss ratio

By dynamically giving resources to the tasks that can (currently)
make the best use of them, DNA and DADNA should be able to
improve the throughput and reduce latency, relative to a static
allocation. Thus, the system should be able to schedule bigger
workloads. Our first experiment tests that hypothesis. We ran
experiments with DNA, DADNA, and vC2M, using workloads
with different utilizations, and we measured the fraction of
tasksets that were empirically schedulable — i.e., tasksets whose
jobs all meet their deadlines during our experiment.

Figure 5(a) shows our results. As expected, as the workload
utilization increases, the fraction of schedulable tasksets also
decreases for all algorithms. However, we observe that DNA
and DADNA are able to schedule much larger workloads
than vC2M, due to their more effective use of the available
resources. For instance, at a workload utilization of 2.6, vC2M
was able to schedule only 6.67% of the tasksets, whereas
DNA and DADNA were able to schedule all tasksets (a 15x
improvement). Hence, the latter is a clear improvement over
the former in terms of schedulability.

Figure 5(b) shows how the job miss rate varies with the
workload utilization. vC?M experiences a substantial miss rate
from very early on: even at a utilization of 1.6, it already
incurs more than 30% miss rate. In contrast, DNA’s and
DADNA’s miss rates remain zero for all utilizations up to
2.6. At a utilization of 3.0 (i.e., when the system is overloaded,
as discussed in the workload generation above), DNA’s and
DADNA'’s miss rates are only half of vC2M’s, and the former
remains strictly below the latter as the system becomes
increasingly overloaded. Thus, the advantage of DNA/DADNA
over vC2M is beyond just the gain in schedulability: with a
substantial lower deadline miss ratio, they deliver much better
QoS than vC2M, and this matters in a soft real-time context.

D. Latency

Another potential benefit of DNA and DADNA is that, due
to the higher throughput, the latency of the jobs is potentially
lower. Our next experiment is designed to examine this. We
ran the same workloads as before, using vC2M, DNA, and
DADNA, but this time we measured the latency of each job. We
then computed the average, 99.99" percentile, and worst-case
latencies for each algorithm across all workload utilizations.
Figure 5(c) shows our results. The numbers above the
columns show DNA’s and DADNA'’s latency reduction factors
relative to vC?M. Again, DNA and DADNA substantially
outperform vC?M: they cut the average, the 99.99%" percentile,
and the worst-case latencies by more than half. This is expected:
it is well known that EDF produces increasing latencies under



overload conditions, since jobs tend to “back up” for some
time once a deadline is missed, causing cascades of additional
deadline misses along the way, and this effect increases with
utilization. (This is also why the numbers are so high in absolute
terms.) Thus, by making the best use out of the resources, DNA
and DADNA can effectively reduce not only the average but
also the tail and worst-case latencies.

Figure 6 shows these results in more detail; it contains
CDFs of the normalized latency (that is, the ratio of latency
to deadline) for different workload utilizations: 1.4 (a), 2.0
(b), and 2.6 (c). The results reinforce the earlier point that
DNA’s and DADNA’s more efficient use of the available
resources improves latency substantially, relative to vC?>M. In
this experiment, there is little difference between DNA and
DADNA because the behavior of the two differs only very
close to a deadline.

Utilization = 1.0 Utilization = 2.0 Utilization = 3.6
Avg 99.99th  Max | Avg 99.99th Max | Avg 99.99t  Max
DNA 4.5 14.3 13.9 | 3.2 5.3 5.0 | 1.7 2.0 2.0
DADNA | 4.5 14.8 148 | 3.3 5.6 56 | 2.2 2.4 2.4

Fig. 7: Latency reduction factors relative to vC2M.

The results also show that DNA’s and DADNA’s improve-
ment factors depend on the system loads. Figure 7 shows their
overall latency reduction factors, relative to vC2M, at three
different workload utilizations (1.0, 2.0 and 3.6) that represent
light load, medium load and heavily overload scenarios.
Again, DADNA and DNA consistently outperform vC?>M by
a significant factor. For example, DADNA and DNA reduce
the average latency by more than 4.5x at light load, 3.2x at
medium load, and 1.7 x at heavily overload scenarios, compared
to vC2M. The reduction factors for the 99.99t" percentile and
worst-case latencies are even more significant: DADNA and
DNA cut latencies by more than 14x, 5.3x and 2.0x at light
load, medium load and heavily overload scenarios, respectively.

E. DADNA vs. DNA

As shown in Figure 5(c) and Figure 7, DADNA is more effec-
tive than DNA in reducing latencies. However, their difference
in schedulability and deadline miss ratio in Figures 5(a-b)
appears to be somewhat small. This is because both algorithms
allocate resources dynamically and efficiently, and because
EDF is used in both cases; the only difference is that DADNA
can handle an (important) corner case in which a job is not
schedulable in the usual way but can be pushed over the edge
with a greater resource allocation. This was observed in our
results for bimodal tasksets, where DADNA offers up to 1.5x
improvement over DNA in schedulability (and latencies); due
to space constraints, we omit the details.

FE. Summary

By taking phases into account and by reallocating resources
dynamically, both DNA and DADNA can use the available
resources more effectively than a static allocation method,
such as vC?M. This results in better schedulability, lower job

deadline miss ratio, and lower latencies. In terms of overall
performance, the two algorithms are similar, but DADNA is
noticeably better than DNA at reducing latencies.

IX. CONCLUSION

Our results suggest that it makes sense for schedulers and
resource allocators to “look a bit more closely” at the tasks
in their workloads. By leveraging an observation from the
architecture community — namely that many programs go
through multiple phases with distinct characteristics — DNA
and DADNA are able to improve the performance of a system
without adding more resources, by allocating the existing
resources more effectively to the tasks that can benefit the
most. Compared to prior work, this results in substantially
better schedulability and a factor-of-two latency reduction. And
yet, the phase analysis we used is relatively simple; to us, it
seems likely that there is a lot more information about the needs
and behaviors of tasks that could be extracted — e.g., through
profiling or static analysis — and used profitably to improve
scheduling. This could be an interesting future work. Another
interesting direction is to develop a close-formed schedulability
test for DNA and DADNA to bring their benefits to hard
real-time systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful com-
ments and suggestions. This work was supported in part by
NSF grants CNS-1563873, CNS-1703936, CNS-1750158, and
CNS-1955670, and by ONR N00014-20-1-2744.

REFERENCES

[1] A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch.
Contention-Aware Dynamic Memory Bandwidth Isolation with Pre-
dictability in COTS Multicores: An Avionics Case Study. In ECRTS,
2017.

[2] ARM. PrimeCell level 2 cache controller (PL310) - technical reference
manual. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
ddi0246¢c/index.html. Accessed: 2015-03-29.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization.
In SOSP, 2003.

[4] S. Bateni, Z. Wang, Y. Zhu, Y. Hu, and C. Liu. Co-optimizing
performance and memory footprint via integrated cpu/gpu memory
management, an implementation on autonomous driving platform. In
RTAS, 2020.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT, 2008.

[6] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management
of multiple interacting resources in chip multiprocessors: A machine
learning approach. In MICRO, 2008.

[71 J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson. LITMUS*T": A Testbed for Empirically Comparing Real-Time
Multiprocessor Schedulers. In RTSS, 2006.

[8] T. Calinski and J. Harabasz. A dendrite method for cluster analysis.
Communications in Statistics, 3(1):1-27, 1974.

[9] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread

cache contenton on a chip multi-processor architecture. In HPCA, 2005.

T. Chen and L. T. X. Phan. SafeMC: A system for the design and

evaluation of mode-change protocols. In RTAS, 2018.

M. Chisholm, W. Bryan C, N. Kim, and J. H. Anderson. Cache sharing

and isolation tradeoffs in multicore mixed-criticality systems. In RTSS,

2015.

C.-B. Cho and T. Li. Complexity-based program phase analysis and

classification. In PACT, 2006.

[10]

(1]

[12]



[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

C.-B. Cho and T. Li. Using wavelet domain workload execution
characteristics to improve accuracy, scalability, and robustness in program
phase analysis. In ISPASS, 2007.

C. Courtaud, J. Sopena, G. Muller, and D. G. Pérez. Improving prediction
accuracy of memory interferences for multicore platforms. In RTAS,
2019.

D. Dasari, V. Nelis, and B. Akesson. A framework for memory contention
analysis in multi-core platforms. Real-Time Syst., 52(3):272-322, May
2016.

D. L. Davies and D. W. Bouldin. A cluster separation measure. [EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-
1(2):224-227, 1979.

C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and QoS-
aware cluster management. In ASPLOS, 2014.

A. Dhodapkar and J. E. Smith. Dyanmic microarchitecture adaptation
via co-designed virtual machines. In ISSCC, 2002.

A. Dhodapkar and J. E. Smith. Managing multi-configuration hardware
via dynamic working set analysis. In ISCA, 2002.

S. V. Gheorghita, T. Basten, and H. Corporaal. Intra-task scenario-aware
voltage scheduling. In CASES, 2005.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In NSDI, 2011.

D. Guo and R. Pellizzoni. A requests bundling dram controller for
mixed-criticality systems. In RTAS, 2017.

M. Héhnel and T. Smejkal. Modular energy modeling using energy/utility.
In ICPE, 2018.

M. Hassan, H. Patel, and R. Pellizzoni. A framework for scheduling
dram memory accesses for multi-core mixed-time critical systems. In
RTAS, 2015.

M. Hassan, H. Patel, and R. Pellizzoni. PMC: A requirement-aware dram
controller for multicore mixed criticality systems. ACM Trans. Embed.
Comput. Syst., 16(4):100:1-100:28, May 2017.

C.-H. Hsu, U. Kremer, and M. S. Hsiao. Compiler-directed dynamic
voltage/frequency scheduling for energy reduction in microprocessors.
In ISLPED °01, 2001.

T. Huffmire and T. Sherwood. Wavelet-based phase classification. In
PACT, 2006.

Intel. Improving real-time performance by utilizing cache allocation
technology, Apr. 2015. White Paper.

Intel. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3B, Nov. 2020. Order No. 325462-
073US, https://software.intel.com/content/dam/develop/external/us/en/
documents-tps/325462-sdm-vol-1-2abcd-3abed.pdf.

H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar.
Bounding memory interference delay in cots-based multi-core systems.
In RTAS, 2014.

H. Kim and R. R. Rajkumar. Real-time cache management for multi-core
virtualization. In EMSOFT, 2016.

N. Kim, M. Chisholm, N. Otterness, J. H. Anderson, and F. D. Smith.
Allowing shared libraries while supporting hardware isolation in multicore
real-time systems. In RTAS, 2017.

N. Kim, B. C. Ward, M. Chisholm, C.-Y. F. ,J. H. A. , and F. D. Smith.
Attacking the one-out-of-m multicore problem by combining hardware
management with mixed-criticality provisioning. In RTAS, 2016.

J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation
for variable length intervals and hierarchical phase behavior. In ISPASS,
2005.

B. Li, L. Zhao, R. Iyer, L.-S. Peh, M. Leddige, M. Espig, S. E. Lee, and
D. Newell. CoQoS: Coordinating QoS-aware shared resources in NoC-
based SoCs. Journal of Parallel and Distributed Computing, 71(5):700 —
713, 2011.

Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a
dynamically-scheduled real-time memory controller. Real-Time Syst.,
52(5):675-729, Sept. 2016.

J. Lin, Q. Lu, X. Ding, Z. Zhang, and P. Sadayappan. Gaining insights
into multicore cache partitioning: Bridging the gap between simulation
and real systems. In HPCA, 2008.

L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu. Going vertical in
memory management: Handling multiplicity by multi-policy. In ISCA,
2014.

T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient deterministic
multithreading. In Proc. SOSP, 2011.

[40]

[41]

[42]
[43]

[44]

[45]

[46]

(471

(48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
(591
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni. Real-time cache management framework for multi-core
architectures. In RTAS, 2013.

A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. Buttazzo. Memory-processor co-scheduling in fixed priority systems.
In RTNS, New York, NY, USA, 2015. ACM.

T. K. Moon. The expectation-maximization algorithm. [EEE Signal
Processing Magazine, 13(6):47-60, 1996.

F. Mueller. Compiler support for software-based cache partitioning. In
LCTES, 1995.

J. Park, S. Park, and W. Baek. CoPart: Coordinated partitioning of
last-level cache and memory bandwidth for fairness-aware workload
consolidation on commodity servers. In EuroSys, 2019.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley. A predictable execution model for cots-based embedded
systems. In RTAS, Washington, DC, USA, 2011. IEEE Computer Society.
R. S. Peterson and E. G. Sirer. Antfarm: Efficient content distribution
with managed swarms. In NSDI, 2009.

M. K. Qureshi and Y. N. Patt. Ultility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches. In MICRO, 2006.

D. A. Reynolds. Gaussian mixture models. Encyclopedia of biometrics,
741, 20009.

M. Roitzsch, S. Wichtler, and H. Hirtig. Atlas: Look-ahead scheduling
using workload metrics. In RTAS, 2013.

Real-time deferrable server (rtds) scheduler. https://wiki.xenproject.org/
wiki/RTDS-Based-Scheduler.

S. Schliecker and R. Ernst. Real-time performance analysis of multipro-
cessor systems with shared memory. ACM Trans. Embed. Comput. Syst.,
10(2):22:1-22:27, Jan. 2011.

A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for TDMA
arbitration in resource sharing systems. In R7AS, 2010.

A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Caccamo.
Timing analysis for resource access interference on adaptive resource
arbiters. In RTAS, 2011.

A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R.
Das. Mete: Meeting end-to-end QoS in multicores through system-wide
resource management. SIGMETRICS Perform. Eval. Rev., 39(1):13-24,
June 2011.

X. Shen, Y. Zhong, and C. Ding. Locality phase prediction. In ASPLOS,
2004.

T. Sherwood and B. Calder. Time varying behavior of programs. Technical
Report CS99-630, UCSD, Aug. 1999.

T. Sherwood, E. Perelman, and B. Calder. Basic block distribution
analysis to find periodic behavior and simulation points in applications.
In PACT, 2001.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In ASPLOS, 2002.

T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. In
ISCA, 2003.

Splash2x benchmark. http://parsec.cs.princeton.edu/parsec3-doc.htm#
splash2x.

L. Subramanian. Providing High and Controllable Performance in
Multicore Systems Through Shared Resource Management. PhD thesis,
Carnegie Mellon University, 2015.

G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. Journal of Supercomputing, 28(1):7-26, 2004.

N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and
R. R. Rajkumar. Coordinated bank and cache coloring for temporal
protection of memory accesses. In ICESS, 2013.

P. K. Valsan, H. Yun, and F. Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In R7TAS, 2016.

X. Wang and J. F. Martinez. Xchange: A market-based approach to
scalable dynamic multi-resource allocation in multicore architectures. In
HPCA, 2015.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The splash-2
programs: Characterization and methodological considerations. SIGARCH
Comput. Archit. News, 23(2):24-36, May 1995.

J. Xiao, S. Altmeyer, and A. D. Pimentel. Schedulability analysis of
non-preemptive real-time scheduling for multicore processors with shared
caches. In RTSS, 2017.

Y. Xie and G. H. Loh. Dynamic classification of program memory
behaviors in CMPs. In CMP-MSI, 2008.



[69]
[70]
[71]

[72]

[73]
[74]
[75]

[76]

(771

[78]

[79]

[80]

M. Xu, R. Gifford, and L. T. X. Phan. Holistic multi-resource allocation
for multicore real-time virtualization. In DAC, page 168, 2019.

M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. Holistic
resource allocation for multicore real-time systems. In R7AS, 2019.

M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. vcat: Dynamic cache
management using cat virtualization. In RTAS, 2017.

G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo. Global real-time
memory-centric scheduling for multicore systems. IEEE Transactions
on Computers, 65(9):2739-2751, Sept 2016.

Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache
partitioning system using page coloring. In PACT, 2014.

Y. Ye, R. West, J. Zhang, and Z. Cheng. Maracas: A real-time multicore
vepu scheduling framework. In RTSS, 2016.

H. Yun, R. Pellizzoni, and P. K. Valsan. Parallelism-aware memory
interference delay analysis for cots multicore systems. In ECRTS, 2015.
H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory access
control in multiprocessor for real-time systems with mixed criticality. In
ECRTS, 2012.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms. In RTAS, 2013.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
bandwidth management for efficient performance isolation in multi-core
platforms. IEEE Transactions on Computers, 65(2):562-576, Feb 2016.
Y. Zhou and D. Wentzlaft. MITTS: Memory inter-arrival time traffic
shaping. In ISCA, 2016.

S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared
resource contentionin multicore processors via scheduling. In ASPLOS,
2010.



