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ABSTRACT

Distributed analytics systems enable users to efficiently perform
computations over large distributed data sets. Recently, systems
have been proposed that can additionally protect the data’s privacy
by keeping it encrypted even in memory and by performing the
computations using trusted execution environments (TEEs). This
approach has the potential to make it much safer to outsource ana-
lytics jobs to an untrusted cloud platform or to distribute it across
multiple parties. TEEs, however, suffer from side channels, such as
timing, memory access patterns, and message sizes that weaken
their privacy guarantees. Existing privacy-preserving analytics sys-
tems only address a subset of these channels, such as memory
access patterns, while largely neglecting size and timing. Moreover,
previous attempts to close size and timing channels suffer from
high performance costs, impracticality, or a lack of rigorous privacy
guarantees.

In this paper, we present an approach to mitigating timing and
size side channels in analytics based on differential privacy that
is both dramatically more efficient than the state-of-the-art while
offering principled privacy assurances. We also sketch a design for
a new analytics system we are developing called Hermetic that
aims to be the first to mitigate the four most critical digital side
channels simultaneously. Our preliminary evaluation demonstrates
the potential benefits of our method.
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1 INTRODUCTION

Recently, a number of systems have been proposed that can pro-
vide privacy-preserving distributed analytics [23, 29]. At a high level,
these systems provide functionality that is comparable to a sys-
tem like Spark [28]: users can upload large data sets, which are
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distributed across a potentially large number of nodes, and they
can then submit queries over this data, which the system answers
using a distributed query plan. However, in contrast to Spark, these
systems also protect the confidentiality of the data. This is attractive,
e.g., for cloud computing, where the owner of the data may wish
to protect it against a potentially curious or compromised cloud
platform.

It is possible to implement privacy-preserving analytics using
cryptographic techniques [19, 21], but the resulting systems tend
to have a high overhead and can only perform a very limited set
of operations. An alternative approach [18, 23, 29] is to rely on
trusted execution environments (TEEs), such as Intel’s SGX. With
this approach, the data remains encrypted even in memory and is
only accessible within a trusted enclave within the CPU. As long as
the CPU itself is not compromised, this approach can offer strong
protections, even if the adversary has managed to compromise the
operating system on the machines that hold the data.

However, even though SGX-style hardware can prevent an ad-
versary from observing the data itself, the adversary can still hope
to learn facts about the data by monitoring various side channels.
The classic example is a timing channel [12]. Suppose a query com-
putes the frequency of various medical diagnoses, and suppose the
adversary knows that the computation will take 51us if Bob has
cancer, and 49us otherwise. Then, merely by observing the amount
of time spent in the enclave, the adversary can learn whether Bob
has cancer.

Side-channel leakage in privacy-preserving analytics has re-
ceived considerable attention recently [2, 3, 17, 18, 29], but existing
proposals, such as data-oblivious algorithms, mainly focus on elim-
inating data-dependent memory access patterns; there is much less
work on addressing other side channels, such as message sizes and
timing. These channels are hard to close because they fundamen-
tally depend on the amount of data being processed and the sizes
of intermediate results. As a result, the mitigations offered by prior
work are unsatisfying. The most common approach is to pad com-
putation time and message sizes all the way to their worst-case
values, but this method can drive up overhead by several orders
of magnitude. Furthermore, current attempts to avoid full padding
either employ ad-hoc schemes that lack provable privacy guaran-
tees [17] or rely on users to specify padding bounds a priori, which
we believe is unrealistic [29].

In this paper, we sketch a new approach to mitigating timing
and message size side channels in privacy-preserving analytics
that is substantially more efficient than full padding, while offering
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principled privacy guarantees. We show that, if a user is willing
to disclose even a small, controlled amount of information through
side channels, they can obtain much better performance. Our main
challenge is to find a principled way to reason quantitatively about
this leakage, and we argue that differential privacy can provide
such a mechanism. The information that an adversary can infer
by monitoring timing and message size side channels during a
query’s execution is equivalent to having access to the results of
a particular aggregation query over the database. Thus, just as
differential privacy can be used to bound the amount of information
that the query results leak about individual records, so too can it
be used to bound the leakage through timing and message size side
channels.

We have incorporated these insights into a prototype query
planner that automatically determines the number of dummy rows
that must be added to the output of query operators in order to
bound side channel leakage. To do so, it computes differentially
private statistics about each table involved in a query. Moreover, the
planner enables users to prioritize privacy or performance and to
specify how much privacy loss they are willing to tolerate for each
table. It then generates an efficient query plan that respects these
priorities. Our preliminary experimental evaluation shows that
our approach is indeed several orders of magnitude more efficient
than full padding, which is the only other principled side-channel
mitigation in analytics systems so far. At the same time, it shows
that our method has comparable performance to existing SGX-based
analytics systems while offering stronger privacy guarantees.

The query planner is a central component of a larger system
called Hermetic that we are working on. Hermetic aims to miti-
gate the four major digital side channels - timing, memory access
patterns, instruction traces, and I/O sizes — while achieving perfor-
mance that is as good or better than privacy-preserving analytics
systems with weaker privacy guarantees. Hermetic is based on an
oblivious execution environment (OEE), a novel primitive that can
perform small computations safely, by executing them in a core
that is completely “locked down” and cannot be interrupted or ac-
cess uncached data during the computation. In summary, our main
contributions are:

o A new approach to mitigating timing and message size side
channels in data analytics systems using differential privacy.

e A query planner that automatically computes the appropri-
ate amount of padding needed to limit side channel leakage
and allows users to trade off privacy and performance.

o A design for privacy-preserving analytics system that aims
to be the first to mitigate the four major digital side channels.

o A preliminary experimental evaluation demonstrating the
benefits of our approach.

2 BACKGROUND AND RELATED WORK

In the scenario, we are interested in, there is a group of participants,
who each own a sensitive data set, as well as a set of nodes on which
the sensitive data is stored. An analyst can submit queries that can
potentially involve data from multiple nodes. Our goal is to build a
distributed database that can answer these queries efficiently while
giving strong privacy guarantees to each participant. We assume
that the queries themselves are not sensitive — only their answers
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are — and that each node contains a trusted execution environment
(TEE) that supports secure enclaves and attestation, e.g., Intel’s
SGX.

Threat model: We assume that some of the nodes are controlled by
an adversary — for instance, a malicious participant or a third party
who has compromised the nodes. The adversary has full physical
access to the nodes under her control; she can run arbitrary soft-
ware, make arbitrary modifications to the OS, and read or modify
any data that is stored on these nodes, including the local part of the
sensitive data that is being queried. We explicitly acknowledge that
the analyst herself could be the adversary, so even the queries could
be maliciously crafted to extract sensitive data from a participant.

2.1 Background: Differential privacy

One way to provide strong privacy in this setting is to use differen-
tial privacy) [8]. Differential privacy is a property of randomized
queries — that is, queries do not compute a single value but rather
a probability distribution over the range R of possible outputs, and
the actual output is then drawn from that distribution. This can
be thought of as adding a small amount of random “noise” to the
output. Intuitively, a query is differentially private if a small change
to the input only has a statistically negligible effect on the output
distribution.

More formally, let I be the set of possible input data sets. We
say that two data sets di, dy € I are similar if they differ in at most
one element. A randomized query g with range R is e-differentially
private if, for all possible sets of outputs S C R and all similar input
data sets d; and do,

Pr(q(dy) € S] < €° - Prlq(dz) € S].

That is, any change to an individual element of the input data can
cause at most a small multiplicative difference in the probability of
any set of outcomes S. The parameter ¢ controls the strength of the
privacy guarantee; smaller values result in better privacy.

Differential privacy has strong composition theorems; in partic-
ular, if two queries g1 and g2 are ¢1- and ¢;-differentially private,
respectively, then the combination q; - ¢z is €1 + e2-differentially
private [7, 8] Because of this, it is possible to associate each data set
with a “privacy budget” emax that represents the desired strength of
the overall privacy guarantee, and to then keep answering queries
qi,---,qr aslong as 3; & < emax.

2.2 Strawman solution with TEEs

If side channels were not a concern, we could solve our problem
roughly as follows: each node locally creates a secure enclave that
contains the database runtime, and the participants use attestation
to verify that the enclaves really do contain the correct code. Each
participant P; then opens a secure connection to her enclave(s) and
uploads her data d;, which is stored in encrypted form, and then
sets a local privacy budget emay ; for this data. When the analyst
wishes to ask a query, he must create and submit a distributed query
plan, along with a proof that the query is ¢;-differentially private in
data set d;; the enclaves then verify whether a) they all see the same
query plan, and b) there is enough privacy budget left - that is,
€max,i 2 € for each d;. If both checks succeed, the enclaves execute
the query plan, exchanging data via encrypted messages when nec-
essary, and eventually add the requisite amount of noise to the final
result, which they then return to the analyst. Differential privacy
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would ensure that a malicious analyst cannot compromise privacy,
and the enclaves would ensure that compromised nodes cannot get
access to data from other nodes or to intermediate results.

2.3 Related work

Side channels have been haunting TEEs for a long time. It is well
known that SGX, in particular, does not (and was not intended
to [11]) handle most side channels [6]. It is vulnerable to classic
timing channels [12], and recent work has already exploited several
others, including channels due to the sequence of memory accesses
from the enclave [27], the number and size of the messages that are
exchanged between the nodes [17], cache timing [5], the BTB [13],
and the fact that a thread exits the enclave at a certain location in
the code [26].

Many generic techniques have been proposed to mitigate mi-
croarchitectural side channels. For example, T-SGX uses transac-
tional memory to let enclaves to detect malicious page fault moni-
toring [24], Raccoon rewrites programs to eliminate data-dependent
branches [22], libfixedtimefixedpoint [1] replaces IA-32’s na-
tive floating-point instructions that have data-dependent timing
with constant-time versions, and recent work on oblivious algo-
rithms [3, 18, 29] can mitigate the side channel due to memory
access patterns. These techniques are effective against individual
channels, but there is no obvious way to combine them; also, they
tend to have a very substantial performance cost.

2.4 Approach

Unlike previous work, our strategy is based on a key observation:
leakage through timing and message size side channels is equivalent
to leakage through query results. In other words, if an adversary
can observe these channels during the execution of a query, this
is equivalent to giving the adversary the results of an aggregation
query that computes the information that is being leaked over these
channels. For example, seeing how long a selection query takes can
tell the adversary how many records have been selected, and this is
comparable to giving the adversary the results of a select count
query. This insight enables us to leverage traditional database-
privacy techniques — such as differential privacy - to mitigate side
channels; for instance, differential privacy can tell us how much
padding really needs to be added to achieve a given level of privacy,
and this amount will typically be far lower than the worst-case
amount. Moreover, differential privacy offers a principled way to
reason quantitatively about side channel leakage.

We plan to use this approach in a new privacy-preserving ana-
lytics system called Hermetic. Our goal is to get the “best of both
worlds”: we want to mitigate the four most critical digital side
channels (timing, memory accesses, instruction sequence, and mes-
sage sizes) simultaneously, while achieving performance that is as
good as, and ideally better than, prior privacy-preserving analytics
systems.

3 THE HERMETIC SYSTEM

The architecture that we envision for Hermetic consists of a master
node that coordinates query execution and several worker nodes
that execute portions of queries and potentially hold portions of
the data set. Nodes may be operated by different parties and do
not trust other, and Hermetic clients do not trust any of the nodes.
Every node has a TEE, and the only trusted components are the
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Worker nodes

TEEs, the software running in them, and a likely thin hypervisor
(see below).

Hermetic’s runtime will be comprised of the privacy-preserving
query planner that is the main subject of this paper (Section 4) as
well as two other components we are developing that we summarize
here: OEEs for fast oblivious data processing (Section 3.1), and data-
oblivious query operators (Section 3.2).

We expect Hermetic to work as shown in Figure 1: (1) The master
node launches the Hermetic runtime, OEEs, and hypervisor, and
clients contact the runtime to set up a master encryption key and
upload their data. Attestation convinces clients that the authentic
Hermetic software is running. (2) Users submit queries to the query
planner, which generates a concrete query plan. (3) Since the po-
tentially complex planner is outside Hermetic’s trusted computing
base, the runtime verifies the plan to make sure that every query
operators is annotated with its correct sensitivity and privacy cost.
(4) The master node farms out execution of individual operators
from the query plan to the worker node. The workers run the run
operators using a combination of OEEs and oblivious operators.

3.1 Oblivious execution environments
We are exploring a method of mitigating timing and memory-access
pattern side channels for functions with small working sets. It
involves preloading all their code and inputs into an isolated portion
of the cache, and then running them in a “locked down” core that
cannot be interrupted or monitored until the function completes.
We call this primitive an oblivious execution environment (OEE).
More formally, an OEE executes a function out := f(in), such as a
merge sort, on a block of data in of limited size, while preventing
an adversary from learning anything other than f and the sizes
lin| and |out| — even if the adversary has access to the four digital
side channels that we listed in Section 2.4.

We believe that the following four properties will be necessary
and sufficient to implement OEEs:

i OEEs preload and flush. Before the execution on a block
of data in OEEs, all the memory related to the data and
the instructions have to be preloaded to OEEs. After the
execution finishes, the same set of memory must be flushed
from OEEs.

Data-independent runtime instruction trace. An OEEs pro-
gram has to retire the identical trace of instructions, in
terms of op-code, on any input the same size. Furthermore,
constant-time instruction have to be enforced, as in [1].
Non-preemption. The execution, from the beginning to the
end, on a block of data in OEEs should not be interrupted.

=44

i

=

i
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iv Cache isolation. All the cache lines associated with the data
and code of OEEs’ execution must be isolated from other
concurrent processes.

It is unclear whether current CPUs support “locking down” a
core to prevent preemption. If they do not, our prototype may need
to implement that functionality with a thin hypervisor.

3.2 Oblivious operators

OEE:s could provide a way to execute simple computations on fixed-
size blocks of data, while mitigating side channels. But to answer
complex queries, Hermetic will also need higher-level operators.

Our starting point is the oblivious relational operators from
prior work, such as selection, group-by, and join [3, 18]. These
operators’ memory access patterns do not depend on the contents
of their inputs, but they do not address timing or message size
side channels. As a result, we plan to enhance these operators
so that their timing and output sizes can be padded with dummy
rows whose quantity is dictated by differential privacy. The number
of dummy rows must be drawn from a Laplace distribution with
parameter A = s/e, where the sensitivity s is determined by the
query planner. Since the amount of padding is itself sensitive, this
drawing must be performed in an enclave.

Current oblivious operators have two other limitations that we
plan to address. First, they are often quite slow due to their reliance
on data-independent sorting networks [4]. We plan to try to speed
them up by breaking up the sorting task into smaller blocks, and
safely sorting them using traditional merge sort in OEEs. Second,
these operators still often have data-dependent instruction traces,
which will likely address by eliminating conditional branches using
techniques similar to Rane et al. [22].

4 PRIVACY-AWARE QUERY PLANNING

Hermetic’s query planner will assemble operators like those de-
scribed above to answer SQL-style queries. Query planning is a
well-studied problem in databases, but Hermetic’s use of differen-
tial privacy adds a twist: Hermetic is free to choose the amount of
privacy budget ¢ it spends on each operator. Thus, it is able to trade
off privacy and performance: smaller values of ¢ result in stronger
privacy guarantees but also add more dummy rows, which slows
down subsequent operators.

4.1 Computing operator sensitivities
For any query plan it considers, the query planner must first de-
rive upper bounds on the sensitivities s; of the plan’s operators
O;. Hermetic can do so by deriving sub-queries that compute the
number of rows in each operator’s output [15]; we call these queries
leakage queries. Since results of leakage queries are revealed to the
untrusted query planner, they themselves must be noised with dif-
ferential privacy. For example, in Figure 2, to bound the sensitivity
of the leftmost join, Hermetic performs a leakage query that counts
the number of rows in C where age < 27 and noises the result.
If the leakage query contains joins, s; also depends on the multi-
plicities of the joined attributes, which can can also be determined
in a privacy-preserving way. If each operator adds a number of
dummy rows that is drawn from Lap(s;/¢;), the overall query plan
is (3; €i)-differentially private.

The quantity of dummy rows drawn from Lap(s; /€;) could be
negative, however. In that case, the result would be truncated,
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Figure 2: Query optimization for an example query. For sim-
plicity, only the ¢y and ¢; dimensions of the cost space are
shown.

thereby introducing some inaccuracy.! Nevertheless, in exchange
for extra padding, we can arbitrarily reduce the probability Psryne
that this condition will occur by adding an offset o; to the value
sampled from the Laplace distribution. For some applications, a
Ptrunc = 0.001 may be acceptable.

4.2 Cost estimation

To trade off privacy and performance, the query planner must not
only compute the privacy cost, which is equal to }}; ¢;, it must also
estimate the performance cost. To obtain an accurate performance
estimate, we model each of Hermetic’s operators as a function of
their input size. This can be done using an established histogram-
based approach from the database literature [20]. According to this
approach, the output size of selections is Ny - sel(R.a = X) and of
joins is Ng, - NR, - sel(Ry.a > R2.b), where Np, is the size of input
relation R;, and sel(R.a = X) and sel(R;j.a >« Ry.b) correspond to
the estimated selectivities of selection and join, respectively. As
shown in [9], the selectivities can be estimated from simple statistics
that Hermetic computes using the histogram operator. To assess
the performance implications of the dummy rows, Hermetic takes
them into account when estimating relation sizes. Since Lap(s; /¢;)
has a mean of zero, the expected number of dummy rows added
by operator O; is simply the offset 0;. As with leakage queries,
the results of histogram queries used in cost estimation must be
noised with differential privacy to avoid leaking sensitive data to
the untrusted query planner.

4.3 Query optimization
Hermetic’s query planner uses multi-objective optimization [25] to
find the optimal plan that matches the user’s priorities. A plan is
associated with multiple costs, including the overall performance
cost and a vector of privacy costs over the sensitive input relations.
The user specifies the vectors of bounds, B, and weights, W, on
the privacy costs for the input relations. Each candidate plan is
represented as a join tree covering all the input relations, with
each noised operator assigned a privacy parameter, ¢;. The planner
outputs the plan whose weighted sum of all the costs is optimal,
under the user-specified constraints.

The planner first constructs the complete set of alternative plans
joining the input relations. Then, for each of the candidate plans, it
formalizes an optimization problem on the privacy parameters of

UIf the total number of rows with padding added is negative, we can safely clamp it to
zero because doing so is equivalent to a postprocessing step, which does not affect the
privacy cost.
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all the noised operators, and solves it using linear programming.
Finally, the optimal plan under the user’s constraints is returned.

Returning to the query example in Figure 2, let p be the plan
under consideration, £[i] be the privacy parameter on the i-th op-
erator of the plan, and f;,(¢) be the plan’s overall performance cost.
Then, we could solve the following optimization problem for the
privacy parameters:

min W- A&+ fp(e)
s.t.A-e <B,0<¢e<B.

1

Here, the matrix A is the linear mapping from privacy parameters
to the privacy costs on the input relations. For instance, suppose
the C, T and P relations are indexed as 0, 1 and 2, and the privacy
parameters on the selection on C, the selection on P, the join of C
and T and the join of (C » T) and P are indexed as 0, 1, 2 and 3
respectively. Then, the corresponding A for the plan is:

10
00 1 1 (2)
0 1

Finding an exact solution to this optimization problem is challeng-
ing because we cannot assume that the performance cost func-
tion fp(¢) is either linear or convex. Instead, Hermetic tackles the
problem by approximating the cost function with piecewise linear
approximation, and solving the piecewise linear programming prob-
lem to derive the near-optimal assignment of ¢. This approach is
consistent with existing nonlinear multidimensional optimization
techniques in the optimization literature [14].

The number of partitions of the parameter space, K, affects the
optimization latency and accuracy. Larger K leads to more fine-
grained linear approximation of the non-linear objective, but re-
quires more linear programmings to be solved. To amortize the
optimization overheads for large K, the query planner could be
extended with parametric optimization [10] to pre-compute the
optimal plans for all possible W and B so that only one lookup
overhead is necessary to derive the optimal plan at runtime.

5 PRELIMINARY RESULTS

To demonstrate the potential performance benefits of using dif-
ferential privacy for mitigating side channels as well as the query
planner’s ability to trade off privacy and performance, we now
present some back-of-the-envelope calculations and preliminary
results from our initial experiments.

We ran a prototype of Hermetic’s query planner on an Ubuntu
14.04LTS machine that had a quad-core 2.1 GHz Intel Xeon E5-2600
processor and 64GB RAM. We used a data set consisting of three
relations: taxi trips, customer information, and points of interest.
The Trips relation has 5-days-worth of records drawn from real-
world NYC taxi data [16], which has previous been used to study
side-channel leakage in MapReduce [17]. Since the NYC Taxi and
Limousine Commission did not release data about Customers or
points of interest (Poi), we synthetically generated them. To allow
for records from the Trips relation to be joined with the other
two relations, we added a synthetic customer ID column to the
trips table, and we used locations from the Trips relation as Poi’s
geolocations. We used SELECT sum(tip) FROM Customer C, Trip
T, Poi P WHERE C.c_id=T.c_id AND T.drp = P.loc AND
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Operator | Actual size | Max size Noised size | Noised size
(e =0.01) (e =0.001)
Cdob 400 - 103 2-10° 400.92 - 10% | 409.2 - 10°
Ocategory | 500 11-10° 1420 9.7-10°
e id 1.5-10° 1481012 [1.592-10° | 2.42-10°
>Jocation | 100 - 10 1628 - 107 | 4.7-10° 4.61-107

Table 1: The actual, maximum, and noised output sizes (in
rows) of each operator in Q;. The noised sizes are an upper
bound that holds with probability 99%.
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Figure 3: Estimated performance cost of different configura-
tions running Q; (y-axis is logarithmic).

C.dob>01/01/1986 AND P.category = ’hospital’, illustrated
in Figure 2, as our example query Q;.

5.1 Benefits of differentially private padding

Our first goal was to estimate how well Hermetic’s method of com-
puting padding sizes with differential privacy performs compared
with alternative approaches. We tested five configurations with
Q1: Non-oblivious, which did nothing to mitigate side channels;
Oblivious, which used the oblivious relational algorithms from
prior work [3], but did not handle timing or message size side
channels, Full-padding, which naively mitigated side channels
by padding each operator’s output size up to its maximum value;
and two configurations of Hermetic using different values for the
privacy cost €. Non-oblivious used the standard non-oblivious
sort-merge algorithm for joins, whereas the other configurations
used the oblivious join algorithm from Arasu et al. [3] which does
6 data-oblivious sorts.

Our Customer relation had 2 million records, our Trip relation
had 74 million rows, and our Poi relation had 11 thousand points
of interest. Given those relation sizes, Table 1 shows the actual,
maximum, and noised size of the output of each of Q;’s relational
operators. The maximum size of selections is equal to the size of
the input relation, and the maximum size of a join is equal to the
product of the sizes of the two input relations. The noised sizes
reflect size of each operator’s output assuming it was padded with
noise drawn from the Laplace distribution with the given value for
€.

Since the performance of each operator in Q; depends on its
input size, we were able to estimate each operator’s performance
using the output size of the preceding operator in the query plan.
By summing these estimates, we were able to derive an estimate
of the total performance cost of each of the five configurations we
tested. The results, shown in Figure 3, demonstrate that, as expected,
Non-oblivious is the fastest, but of course it offers no defense
against side channels. On the other hand, Full-padding, previously
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Figure 4: Privacy and performance costs for various weights on the privacy of Customers, Trips and Poi.
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the only principled approach to mitigating timing and size channels,
has huge overhead — about 13 orders of magnitude! By contrast,
Hermetic’s performance is much closer to Non-oblivious than
to Full-padding and is roughly on par with Oblivious, which
unlike Hermetic only mitigates memory access pattern leakage
rather than timing and size channels as well.

5.2 Benefits of query optimization

Next, we explored how the query planner could derive different
plans depending on the relative importance that the analyst as-
signed to performance as opposed to privacy and depending on the
sensitivity that the analyst assigned to the data in each relation.
We did so by supplying the planner different weight vectors with
weights corresponding to the importance of performance and to the
importance of the privacy of each relation. First, we set the privacy
weights on each relation to be equal and progressively increased
their relative weight with respect to performance cost. As shown
in Figure 4(a), as the weight on privacy was increased, the planner
found plans with different performance-privacy tradeoffs.

Second, we adjusted allowable privacy cost to the relations rel-
ative to each other. Figure 4(b) shows the privacy cost on the
Customers relation as a function of the weights on two of the
relations (a different pair in each sub-figure). In each case, the
weight on the third relation was fixed to 1078, Not surprisingly, the
privacy cost on Customers follows the weight on Customers, and
is independent on the weights on Trips and Poi. The numbers in
the cells of the heat maps indicate the performance costs of the
optimal plans in each case, and they increased as the weight on any
relation increased.

6 CONCLUSION

In this paper, we have presented an approach to mitigating timing
and size side channels in distributed analytics systems based on
differential privacy. It is much more efficient than full padding and
offers more rigorous privacy guarantees than prior ad hoc meth-
ods. Our query planner that implements this method also allows
analysts to trade off privacy and performance automatically. We
are working on Hermetic, a new analytics system that aims to com-
bine this query planner with oblivious execution environments
and improved oblivious operators in order to to mitigate the four
most critical digital side channels simultaneously. Our preliminary
results suggest that Hermetic can be competitive with previous
privacy-preserving systems even though it provides stronger pri-
vacy guarantees.
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