
Hermetic: Privacy-preserving distributed analytics
without (most) side channels

Min Xu
‡

Antonis Papadimitriou
†⋄

Andreas Haeberlen
†

Ariel Feldman
‡⋆

†
University of Pennsylvania

‡
University of Chicago

⋆
Google

⋄
Duality Technologies

Abstract
Trusted execution environment (TEE), such as Intel SGX,

is an emerging technology that enables privacy-preserving

distributed analytics on an untrusted cloud platform. TEEs,

however, suffer from side channels, such as timing, mem-

ory and instruction access patterns, and message sizes that

weaken their privacy guarantees. Existing attempts to miti-

gate these channels in analytics systems are unsatisfactory

because they do not attempt to address multiple critical side

channels simultaneously and employ mitigations that are

inefficient, unprincipled, or difficult to use.

In this paper, we present Hermetic, a data query process-

ing system that offers a principled approach to mitigating

four of the most critical digital side channels simultaneously.

We introduce an oblivious execution environment that sup-

ports fast, non-oblivious computations without leakage, as

well as fast secure query operators using this primitive to

process large data sets. We apply the differentially private

(DP) padding mechanism on execution time and output sizes

of query operators, which avoids prohibitive padding over-

heads as in most prior solutions, with provable privacy. To

achieve efficient DP padding in complex query, we further

introduce an privacy-aware query planner that can optimize

a query plan under user’s privacy constraints. Our experi-

mental evaluation of a Hermetic prototype shows that it is

competitive with previous privacy-preserving systems, even

though it provides stronger privacy guarantees.

1 Introduction
Recently, several systems have been proposed that can pro-

vide privacy-preserving distributed analytics [79, 99]. At a

high level, these systems offer functionality comparable to

a system like Spark [96]: mutually untrusted data owners

can upload large data sets, which are distributed across a

potentially large number of nodes, and they can then submit

queries across the uploaded data, which the system answers

using a distributed query plan. However, in contrast to Spark,

these systems also protect the confidentiality of the data.

This is attractive, e.g., for cloud computing, where the data

owner may wish to protect it against a potentially curious

or compromised cloud platform.

It is possible to implement privacy-preserving analytics

using cryptographic techniques [71, 76], but the resulting

systems tend to have a high overhead and can only perform

a very limited set of operations. An alternative approach [69,

79, 99] is to rely on trusted execution environments (TEEs),

such as Intel’s SGX. With this approach, the data remains

encrypted even in memory and is only accessible within a

trusted enclave within the CPU. As long as the CPU itself is

not compromised, this approach can offer strong protections,

even if the adversary has compromised the operating system

on the machines that hold the data.

However, even though trusted hardware can prevent an

adversary from observing the data itself, the adversary can

still hope to learn facts about the data by monitoring var-

ious side channels. Currently, the most notorious attacks

exploiting such channels are the various Meltdown [52],

Spectre [47], and Foreshadow [87] variants, which are due to

vulnerabilities in current CPU designs. These channels are

devastating because they affect a huge number of deployed

CPUs, and, in the case of Foreshadow, even compromise the

security of the trusted SGX enclave itself! However, from a

scientific perspective, they are actually not the most danger-

ous ones: now that the underlying vulnerabilities are known,

they can be fixed in the next generation of CPUs [41]. In

contrast, there are many other side channels – including

the execution time of a target program [50], the sequence of

memory accesses from the enclave [94], the number and size

of the messages that are exchanged between the nodes [68],

the contents of the cache [14], and the fact that a thread

exits the enclave at a certain location in the code [51, 91] –

that are more fundamental and will stay with us even after

Meltdown, Spectre, and Foreshadow have been fixed.

Side channel leakage in privacy-preserving analytics has

received considerable attention recently [5, 6, 68, 69, 99], but

existing proposals still suffer from twomain limitations. First,

they do not attempt to mitigate the most critical side chan-

nels simultaneously or to evaluate the performance impact of

doing so. For instance, Opaque [99] explicitly declares timing

channels to be out of scope. Second, the mitigations that they

do employ are unsatisfying. The most common approach is

to pad computation time and message size all the way to

their worst-case values. But as we show experimentally, full

padding can drive up overhead by several orders of magni-

tude. Furthermore, existing attempts to avoid full padding

suffer from one of the three problems: i) employing ad hoc

schemes that lack provable privacy guarantees [68]; ii) rely-

ing on users to specify padding bounds a priori, which we

believe is unrealistic [99]; and iii) failing to support complex

data analysis due to limited expressiveness [1, 46].

1

This paper proposes Hermetic, which aims to address all of

these limitations. Hermetic mitigates the four major digital

side channels – timing, memory access patterns, instruction

traces, and output sizes – a challenging design problem in

itself, while achieving performance that is as good or better

than systems with weaker privacy guarantees. Moreover,

Hermetic combines a method of padding the execution time

and result size of database queries that is substantially more

efficient than full padding and a new privacy-aware query

planner to provide principled privacy guarantees for complex

queries, i.e., those with multiple join operations, and not

unreasonably burdening the user.

To achieve these goals, we employ a three-pronged strat-

egy either to optimize the critical components or to fill in the

missing parts in previous solutions. The first part is a prim-

itive that can perform fast, non-oblivious sort securely, by

“locking-down” core and carefully transforming the program

to achieve several key properties. This primitive, namely

oblivious execution environment (OEE), protects against digi-

tal side channels and yet improves efficiency. Importantly,

we also provide a concrete implementation of an OEE: al-

though related primitives have been discussed previously

(e.g., in [24, 99]), existing work either simply assumes it with-

out details or achieves weaker security definitions than OEE

does (e.g., in [18, 58].

The second element of our approach is a set of oblivi-

ous query operators that are faster and more secure than

traditional oblivious operators. In particular, we enable the

first secure inner equi-join that is resilient to the four major

side channels, and avoids the prohibitive overheads from

full padding by relaxing the privacy guarantee on output

size channel to differential privacy [22]. The third element

is a privacy-aware query planner that generates an efficient

query plan that respects the user’s specification on privacy

and performance. Differential privacy introduces a set of

privacy parameters that affect both the overall performance

and privacy cost of the query plan to the query optimization

problem, and we solve the problem over the entire privacy

parameter space, as defined by user’s input, while existing

solutions have to assume a fixed set of privacy parameters,

which misses huge optimization opportunity.

We have implemented a Hermetic prototype that runs

on commodity machines. Since current SGX hardware is

not yet able to fully support the “lockdown” primitive we

propose, we have implemented the necessary functionality

in a small hypervisor that can be run on today’s equipment.

Our experimental evaluation shows that our approach is

indeed several orders of magnitude more efficient than full

padding, which has been the only principled side channel

mitigation in analytics systems against the timing and output

side channels. At the same time, we show that Hermetic has

comparable performance to existing SGX-based analytics

systems while offering stronger privacy guarantees.

Sensitive
data

Query

Result

Pamela

Peter

Paul

Alice

Trusted	hardware	(e.g.,	SGX)

Figure 1. Example scenario. Analyst Alice queries sensitive

data that is distributed across multiple machines, which are

potentially owned by multiple participants. An adversary

has complete control over some of the nodes, except the

CPU.

We note that Hermetic is not a panacea: like all systems

that are based on trusted hardware, it assumes that the root

of trust (in the case of SGX, Intel) is implemented correctly

and has not been compromised. Also, there are physical side

channels that even Hermetic cannot plug: for instance, an

adversary could use power analysis [48] or electromagnetic

emanations [49], or simply de-package the CPU and attack

it with physical probes [81]. These attacks are more diffi-

cult and expensive to carry out than monitoring digital side

channels with software.
1
Thus, despite these caveats, Her-

metic brings privacy-preserving distributed analytics closer

to practicality. Our contributions are as follows:

• the design of the Hermetic system (Section 3),

• the OEE primitive, which performs fast, non-oblivious

computations privately on untrusted host (Section 4),

• enhanced oblivious operators, including a new oblivious

join algorithm with DP padding, that limit four different

side channels (Section 5),

• a novel privacy-aware query planner (Section 6),

• a prototype of Hermetic (Section 7), and

• a detailed experimental evaluation (Section 8)

2 Overview
Figure 1 illustrates the scenario we are interested in. There

is a group of participants, who each own a sensitive data

set, as well as a set of nodes on which the sensitive data is

stored. An analyst can submit queries that can potentially

involve data from multiple nodes, which we call federated

data analysis. Our goal is to build a distributed database

that can answer these queries efficiently while giving strong

privacy guarantees to each participant. We assume that the

queries themselves are not sensitive – only their answers

and the input datasets are – and that each node contains a

1
They may also be impossible to eliminate without extensive hardware

changes. Yet, as physical side channel attacks often aim to infer control

flow, we speculate that Hermetic’s mitigations of the instruction trace side

channel may help mitigate these physical channels as well.

2

trusted execution environment (TEE) that supports secure

enclaves and attestation, e.g., Intel’s SGX.

Note that this scenario is a generalization of the scenario

in some of the earlier work [79, 99], which assumes that

there is only one participant, who outsources a data set to a

set of nodes, e.g., in the cloud.

Threat model:We assume that some of the nodes are con-

trolled by an adversary – for instance, a malicious participant

or a third party who has compromised the nodes. The adver-

sary has full physical access to the nodes under her control,

except the CPU; she can run arbitrary software, make ar-

bitrary modifications to the OS, and read or modify any

data that is stored on these nodes; she can probe the mem-

ory bus between CPU and the memory to get the memory

traces. This threat model inherently addresses all previous

user-space side channel attacks [30, 31, 74, 95]. We explicitly

acknowledge that the analyst herself could be the adversary,

so even the queries could be maliciously crafted to extract

sensitive data from a participant.

2.1 Background: Differential privacy
One way to provide strong privacy in this setting is to use

differential privacy [22]. Intuitively, a query is differentially

private if a small change to the input only has a statistically

negligible effect on the output distribution.

More formally, let I be the set of possible input data sets.
We say that two data setsd1,d2 ∈ I are similar if they differ in

at most one element. A randomized query q with range R is

(ε,δ)-differentially private if, for all possible sets of outputs

S ⊆ R and all similar input data sets d1 and d2,

Pr [q(d1) ∈ S] ≤ eε · Pr [q(d2) ∈ S] + δ .

That is, with probability at least 1 − δ , any change to an

individual element of the input data can cause at most a

small multiplicative difference in the probability of any set

of outcomes S . The parameter ε controls the strength of the

privacy guarantee; smaller values result in better privacy, but

require more random noise to output. For more information

on how to choose ε and δ , see, e.g., [35].
Differential privacy has strong composition theorems; in

particular, if two queries q1 and q2 are (ε1,δ1)- and (ε2,δ2)-
differentially private, respectively, then the combination q1 ·
q2 is (ε1 + ε2,δ1 +δ2)-differentially private [21, 22]; note that
it does not matter what specifically the queries are asking.

Because of this, it is possible to associate each data set with a

“privacy budget” εmax that represents the desired strength of

the overall privacy guarantee, and to then keep answering

queries q1, . . . ,qk as long as

∑
i εi ≤ εmax. The latter is only

a lower bound; the differential privacy literature contains

far more sophisticated composition theorems [23, 44, 63, 78],

and these can be used to answer far more queries using the

same privacy “budget”. However, to keep things simple, we

will explain Hermetic using only simple composition.

2.2 Straw-man solution with TEEs
It may appear that the problem we motivated above could

be solved as follows: 1) each participant leverages secure

enclave and remote attestation to protect the confidentiality

and integrity of data and computations on other participants,

which is similar to the encrypt mode in Opaque [99]; 2)

participant, Pi , sets a local privacy budget ε0
max,i for dataset

di , and, for the t-th query, only query plan with valid εi –
that is, εi ≤ εt

max,i , on each dataset di is allowed to execute,

and then ∀i, εt+1
max,i = εt

max,i − εi .
This approach would seem to meet our requirements: dif-

ferential privacy ensures that a malicious analyst cannot

compromise privacy, and the enclaves ensure that malicious

participants cannot get access to intermediate results and/or

sensitive data from other nodes, even when the system must

send such data to their own nodes as part of the query (e.g.,

to be joined with some local data).

2.3 Problem: Side channels
However, the straw-man solution implicitly assumes that the

adversary can learn nothing at all from the encrypted data

or from externally observing the execution in the enclave.

In practice, there are several side channels that remain ob-

servable. The most devastating ones, first identified by Tople

and Saxena [85], are:

• Timing channel (TC) [50]: The adversary can measure

how long the computation in the enclave takes to infer

the execution path, which leaks sensitive information if

branches or indirect jumps depend on the data; and

• Memory channel (MC): The adversary can observe the

locations in memory that the enclave reads or writes (even

though the data itself is encrypted!), which leaks sensitive

information if there are memory accesses indexed by the

data; and

• Instruction channel (IC): The adversary can see the se-

quence of instructions that are being executed, e.g., by

probing the branch target buffer [51], to infer the execu-

tion path, as in TC; and

• Object size channel (OC): The adversary can see the size
of any intermediate results that the enclave stores or ex-

changes with other enclaves, and these size measurements

could be used to reconstruct substantial information about

the data [68].

In general, the connectivity pattern between the enclaves

could be another channel, but in our setting, this pattern

is a function of the (non-sensitive) query and not of the

(sensitive) data, so we do not consider it here.

At first glance, the above channels may not reveal much in-

formation, but this intuition is wrong: prior work has shown

that side channels can be wide enough to leak entire crypto-

graphic keys within a relatively short amount of time [98].

3

To get truly robust privacy guarantees, it is necessary to

close or at least mitigate these channels.

2.4 State of the art
Most prior techniques to address side channels in data anal-

ysis have either used heuristics to reduce the bandwidth

of some of the channels, as, e.g., in [7, 36, 45], or they have

strived to completely remove dependencies between the data

and the channels that an attacker can observe. The former

approach is unsatisfying, since it is difficult to formally rea-

son about the true strength of its guarantee, whereas the

latter comes at great cost. For instance, data oblivious al-

gorithms [6] propose algorithms that address the MC by

accessing the data in a manner that depends only on data’s

size and not on its content. These application-specific algo-

rithms can achieve better performance than generic ORAM

(and they are one of Hermetic’s building blocks), but they

are still quite inefficient. Furthermore, full padding can elim-

inate the TC by padding computation time to its worst-case

value, but it potentially comes with orders of magnitude of

overhead.

More recent work [1, 46] has adopted cheaper mitigations,

including using differential privacy to determine the amount

of padding needed to obscure data sizes and access patterns.

But, it has yet to address more complex relational operations,

such as joins, or how to integrate DP into query planning.

2.5 Approach
Our goal in this paper is to get the “best of both worlds”:

we want to mitigate the four side channels from Section 2.3

while achieving performance that is as good or better than

prior privacy-preserving analytics systems.

Our strategy for doing so benefits from a key observation:

OC leakage is similar to leakage through query results. For

example, observing the size of a selection query’s result

set is the same as to being given the results of a select
count query. Thus, as we will show, it is possible to use

differential privacy to determine the amount of padding to

add to query operators in order to mitigate side channels

even for more complex operations like joins. Whereas DP

applied to query results provides principled techniques for

adding noise to results while preserving utility, DP applied

to side channels offers a principled means for adding dummy

tuples to relations while preserving efficiency. Our system

consists of three components:

Oblivious execution environments: We provide a primi-

tive called OEE that can perform small computations out :=
f (in) entirely in the CPU cache, and such that both the ex-

ecution time and the instruction trace depend only on |in |
and f , but not on the actual data values. This mitigates all

four channels.

Enhanced oblivious operators: We present several en-

hanced oblivious operators, including a new oblivious join

algorithm with DP padding, that can be used to compose

OEE invocations into complex query plans. In addition to

avoiding MC – like all oblivious algorithms – our operators

also have a deterministic control flow (IC & TC), they use

only timing-stable instructions (TC), and the size of their

output is either constant or noised with “dummy tuples” to

ensure differential privacy (TC & OC).

Privacy-aware query planner: We describe a query plan-

ner that optimizes for both efficiency and privacy. It allows

users to assign weights to and bounds on the performance

of query execution and the privacy cost to each relation. It

then uses multi-objective optimization [86] to generate an

efficient query plan, annotated with privacy budget ε on each
operator, that respects these priorities.

3 The Hermetic System
In this section, we describe the workflow of federated query

processing in Hermetic, and defer the detailed discussions

on each of the key components, as well as the prototype

implementation, to Sections 4, 5, 6, and 7

3.1 Overview
Hermetic consists of amaster node, and several worker nodes.

These nodes can switch roles for data proximity, load balance

or policy regulations. Each node runs the trusted hypervisor

to support OEEs (Section 4), and the trusted runtime, inside

a TEE, that includes the Hermetic operators (Section 5) and

a light-weight plan verifier. The last component of Hermetic

is the untrusted query planner (Section 6). The workflow of

Hermetic consists of the following steps:

1. Initially, the master node launches the hypervisor and

runtime, and the data owners contact the runtime to setup

master encryption keys and upload their data (Section 3.2).

Data owners verify the authenticity of both the hypervisor

and the runtime via attestation (Section 3.3).

2. After initialization, analysts can submit queries to the

query planner, which generates a concrete query plan and

forwards it to the runtime (Section 3.4).

3. As the planner is outside trusted computing base, the

runtime verifies incoming plans to make sure that all

operators are annotated with the appropriate sensitivities

and ε’s (Section 3.4).

4. If verification passes, the runtime organizes the worker

nodes to execute the query plan using Hermetic’s oblivi-

ous operators. (Section 3.5).

We describe these steps in greater detail below.

3.2 Initialization
Hermetic is initialized after the data owners set up master

encryption keys and upload their sensitive data to the server.

Since no party in Hermetic is completely trusted, the master

keys are created inside the trusted runtime, using random-

ness contributed by the data owners. After that, the keys are

4

encrypted using a hardware-based key and persisted to sec-

ondary storage using, e.g., SGX’s sealing infrastructure [3].

With the master key in place, data owners send their data,

together with the associated privacy budgets, to the runtime,

which encrypts it with the key and stores it to the disk.

3.3 Attestation
A prerequisite for uploading sensitive data is that data own-

ers can be convinced that they are sending the data to a

correct instantiation of the Hermetic system. This means

that they need to make sure that the Hermetic hypervisor

is running on the remote machine and that the Hermetic

runtime is running in a TEE. We achieve this level of trust

in two stages. First, upon launch, the Hermetic runtime uses

a mechanism such as Intel’s trusted execution technology

(TXT) [39] to get an attestation of the code loaded during

the boot process. If the hypervisor is absent from the boot

process, the Hermetic runtime halts. Second, data owners

leverage enclave attestation, e.g., Intel SGX attestation [3],

to verify that the correct runtime is running in the TEE.

3.4 Query submission and verification
Analysts write their queries in a subset of SQL that supports

select, project, join, and groupby aggregations. Analysts
can supply arbitrary predicates, but they cannot run arbitrary

user-defined functions. Analysts submit queries to the query

planner, which is outside Hermetic’s TCB. The planner then

prepares a query plan to be executed by the runtime.

As explained in Section 6, query plans are annotated with

the sensitivity of each relational operator, as well as with

the ε for adding noise to the intermediate results. Since the

planner is not trusted, these parameters have to be verified,

so that the enough amount of noise will be added for the

required privacy, before the plan is executed: Hermetic has

to check that the sensitivities are correct by computing them

from scratch based on the query plan, and that the total ε
annotations do not exceed the privacy budgets. δ is a sys-

tem parameter enforced by Hermetic runtime, and it is not

explicitly annotated or verified in the plan (Section 5.2). Cor-

rectness and efficiency are out of the scope of Hermetic’s

verification.

The untrusted platform could launch a rollback attack [11,

13, 56, 84], in which it tricks the trusted runtime into leaking

too much information by providing it with a stale copy of

the privacy budget. To ensure the freshness of the stored

privacy budget, the runtime must have access to a protected,

monotonically-increasing counter. This counter could be

implemented using a hardware counter, such as the one op-

tionally available with SGX [38] – possibly enhanced with

techniques to slow wear-out of the counter [11, 84]. Alter-

natively, it could be implemented with a distributed system

consisting of mutually-distrusting parties [13, 56].

3.5 Query execution
If a plan passes the verification, it is executed by the runtime.

Before execution starts, the privacy budget on each relation

is decreased based on the εs in the plan, and the runtime

generates the Laplace noise which determines the number of

dummy tuples to pad intermediate results with. To execute

a query plan, the Hermetic runtime sends all the individual

operators of the plan to different Hermetic worker nodes,

which in turn use the appropriate operators from Section 5

to perform the computation.

4 Oblivious Execution Environments
The first part of Hermetic’s strategy to mitigate side channels

is hardware-assisted oblivious execution, using a primitive

we call an oblivious execution environment (OEE).

4.1 OEE properties
The goal of oblivious execution is to compute a function

out := f (in) while preventing an adversary from learning

anything other than f and the sizes |in | of the input and |out |
of the output - even if, as we have assumed, the adversary

has access to TC, MC, IC and OC.

To provide a solid foundation for oblivious execution with-

out performing dummy memory accesses, we introduce a

primitive oee (f,in,out) that, for a small set of predefined

functions f , has the following four properties:

1. Once invoked, oee runs to completion and cannot be in-

terrupted or interfered with;

2. oee loads in and out into the cache when it starts, and

writes out back to memory when it terminates, but does

not access main memory in between;

3. The execution time, and the sequence of instructions exe-

cuted, depend only on f , |in |, and |out |; and

4. The final state of the CPU depends only on f .

A perfect implementation of this primitive would plug all

four side channels in our threat model: The execution time,

the sequence of instructions, and the sizes of the in and

out buffers are constants, so no information can leak via

the TC, IC, or OC. Also, the only memory accesses that are

visible on the memory bus are the initial and final loads and

stores, which access the entire buffers sequentially, so no

information can leak via the MC. Finally, since the adversary

cannot interrupt the algorithm, she can only observe the

final state of the CPU upon termination, and that does not

depend on the data.

Note, however, that oee is allowed to perform data-dependent

memory accesses during its execution. Effectively, oee is al-

lowed to use a portion of the CPU cache as a private, un-

observable memory for the exclusive use of f . This is what
enables Hermetic to provide good performance.

5

4.2 Challenges in building an OEE today
Prior work has recognized the performance benefits of hav-

ing an un-observable environment for performing data-de-

pendent functions. Zheng et al. [99] speculate that a future

un-observable memory would allow a system to perform

ordinary quick-sort instead of expensive oblivious sort. Un-

fortunately, actually realizing an OEE, especially on current

hardware, is challenging.

We can achieve property #3 by eliminating data-dependent

branches and by padding the execution time to an upper

bound via busy waiting (Section 7.2). We can also disable

hardware features such as hyper-threading that would allow

other programs to share the same core, and thus potentially

glean some timing information from the OEE. Properties

#2 and #4 can be achieved through careful implementation

(Sections 4.3, 7.2). Finally, by executing the OEE in a TEE,

e.g., SGX, enclave, we can ensure that the data is always

encrypted while in memory.

However, even if we ignore the vulnerabilities from [87],

today’s TEE, e.g., SGX, cannot be used to achieve property #1.

By design, SGX allows the OS to interrupt an enclave’s execu-

tion at any time, as well as flush its data from the cache and

remove its page table mappings [17]. Indeed, these limita-

tions have already been exploited to learn secret data inside

enclaves [14, 51, 94]. Flicker [58] achieves property #1 by

suspending the entire machine, except the sensitive program,

using the SKINIT instruction, and we want to achieve prop-

erty #1 without suspending concurrent processes.

4.3 The Hermetic OEE
Realizing an OEE requires that f in OEE be adapted with

deterministic instruction sequences and constrainedmemory

footprints, e.g., by avoiding recursion. Algorithm 1 shows

how we achieve the oblivious instruction trace, in terms of

op-codes, for the core merge-sort function. We unify all the

conditional branches, including those depending on the data

values and the operationmode, into one execution path using

the cwrite primitive. Hermetic actually optimizes Algorithm

1 so that the sorted order is kept in the global oee_buffer
after merge-sort-ing on the sorting attributes, and the rest

of the attributes are linearly re-ordered following the sorting

order, without the cost of merge-sort.
Furthermore, the CPU core that the OEE is running on

must be configured so that no other processes can interrupt

it or interfere with its state. To achieve the latter, Hermetic

relies on a thin layer of hypervisor to configure the under-

lying hardware for the isolation, as shown in Algorithm 2.

Before an OEE can execute, the hypervisor (1) completely

“locks down” the OEE’s core by disabling all forms of preemp-

tion – including IPIs, IRQs, NMIs, and timers; (2) disables

speculation across the OEE boundary to mitigate Spectre-

style attacks by setting the appropriate CPU flags or using

serialization instructions [41]; (3) configures Intel’s Cache

Allocation Technology (CAT) [65] to partition the cache be-

tween the OEE’s core and the other cores at the hardware

level; (4) prevents the OS from observing the OEE’s internal

state by accessing hardware features such as performance

monitoring; (5) flushes legacy data from previous executions

in the isolated cache partition; and (6) when the function

completes, restore the hardware configuration, and flushes

the legacy state of the OEE. In Section 7.1, we present further

details of the hypervisor’s design and its use of the CAT.

Second, the program in OEE should be prefixed with san-

itization to preload all program instructions and memory

states into the isolated cache partition, and postfixed with

cleansing to deterministically pad the execution time and

flush the cache-lines. In Section 7.2, we present further de-

tails of the preloading and time padding. Note that one OEE

invocation can process up-to OEE_SIZE tuples, and the total

size is bounded by the last-level cache partition. We describe

how to build large-scale operators in Section 5.

We view the hypervisor as interim step that makes deploy-

ing Hermetic possible today. In terms of security, the Her-

metic hypervisor is equivalent to the security monitor in [18],

and they both have small TCBs that can be formally verified

and attested to. Its functionality is constrained enough that it

could be subsumed into future versions of TEE, e.g., SGX. We

believe that this paper and other recent work on the impact

of side channels in TEEs demonstrates the importance of

adding OEE functionality to TEEs.

5 Oblivious operators
OEEs provide a way to safely execute simple computations,

e.g., sorting, on blocks of data, while mitigating side chan-

nels. However, to answer complex queries over larger data,

Hermetic needs higher-level operators, as described next.

Our starting point is the set of so-called oblivious query op-

erators, introduced in prior work [6, 69], whose memory ac-

cess patterns depend only on their input size, not the specific

values. These include inherently oblivious relational opera-

tors, such as project, rename, union and cartesian-product
as well as operators based on oblivious sorting networks (e.g.,

Batcher’s odd-even merge-sort [9] — batcher-sort). Obliv-
ious sort is the basis for auxiliary oblivious operators like

group-running-sum, filter, semijoin-aggregation and
expand, which in turn can be combined to form familiar

relational such as select, groupby, orderby and join. In
particular, an oblivious inner equi-join could be constructed

by first applying semijoin-aggregation [6] on the two in-

put relations to derive the join degree, namely the number of

matches for a tuple from the other relation, then expand-ing
the two relations based on join degree following equally-

interleaved expansion [69], obliviously sorting the expanded

relations ordered by join attributes and expansion id, and,

finally, stitch-ing them together to get the result. Note that

, before Hermetic, there is no existing system that supports

6

Algorithm 1: OEE merge-sort with data oblivious in-

struction trace. end, ascend, attrs are function param-

eters pre-loaded into global oee_buffer, and tb points
into the oee_buffer for storing tuple input and output.

OEE_SIZE indicates the maximum number of tuples that

one OEE invocation could process.

1 func merge − sort(mode)
2 for len ∈ {20, ..., 2loд (end) } do
3 for o f f ∈ {0, 2 · len, ..., ⌊ end

2·len ⌋ · 2 · len} do
4 riдht ← MIN(o f f + 2 · len − 1, end)

5 pos1 ← o f f ; pos2 ← o f f + len

6 for cur ∈ {0, ..., riдht − o f f } do
7 conda ← (pos1 ≤ o f f + len − 1)

8 condb ← (pos2 ≤ riдht); condc ← 0

9 cwrite(conda , cur1,pos1,o f f + len − 1)

10 cwrite(condb , cur2,pos2, riдht)

11 foreach f ∈ attrs do
12 cwrite((condc = 0), condc , tb[cur1][f] −

tb[cur2][f], condc)
13 condd ← ((condc ≤ 0) = ascend)

14 cond1 ← (mode = PRELOAD)?(pos1 <=
(pos2 − len)) : (conda · condd > condb − 1)

15 for f ∈ {0, ..., FIELDS_PER_RUN} do
16 cwrite(cond1, tb[OEE_SIZE + o f f +

cur][f], tb[cur1][f], tb[cur2][f])
17 cwrite(cond1,pos1,pos1 + 1,pos1)

18 cwrite(cond1,pos2,pos2,pos2 + 1)

19 cwrite((mode = PRELOAD), l , 0, OEE_SIZE)

20 for cur ∈ {0, ..., riдht − o f f } do
21 tb[o f f + cur]← tb[o f f + l + cur]

22 func cswrite(cond,out , in1, in2)
23 asm volatile("test eax, eax"

24 "cmovnz %2, %0", "cmovz %3, %0"

25 : "=r"(*out) : "a"(cond), "r"(in1),
"r"(in2) : "cc", "memory")

data-oblivious inner equi-join for federated data analysis.

See Appendix A.1 for more details about these operators.

5.1 Extending oblivious operators
Existing oblivious query operators are vulnerable to TC and

IC. We eliminate the data-dependent branches by unifying

them into one execution path using the cwrite primitive

(Algorithm 1). We avoid instructions with data-dependent

timing following [4].

Furthermore, we accelerate existing oblivious operators,

by replacing batcher-sort with hybrid-sort that lever-

ages OEEs (See Algorithm 3). hybrid-sort is faster than

batcher-sort because each block data in OEE is sorted

by faster merge-sort (Line 3). This would accelerate the

select, groupby and joinwhose performance is dominated

by oblivious sort.

Algorithm 2: OEE isolation.

1 func oee − sort(R,attr , order)
2 Disable preemption/interrupts

3 Set speculative execution boundary

4 Configure CAT for last-level cache isolation

5 Disable PMC read

6 Flush the entire cache partition

7 Load attr , order into global oee-buffer

8 foreach FIELDS_PER_RUN attrs ∈ R do
9 Load the attributes of R to oee-buffer

10 Linear scan over oee-buffer // cache data

11 merge-sort(PRELOAD) // cache code

12 merge-sort(REAL)

13 Copy sorted attributes from oee-buffer to R

14 Pad the execution time

15 Flush cache & restore H/W configurations

Algorithm 3: The OEE-assisted hybrid-sort primitive.

1 func hybrid − sort(R = {t0, . . . , tn },attr , order)
2 if |R | ≤ OEE_SIZE then
3 oee − sort(R,attr , order)

4 else
5 hybrid − sort({t0, . . . , tn/2},attr , order)

6 hybrid − sort({tn/2+1, . . . , tn },attr , order)

7 hybrid − merge(R,attr , order)

8 func hybrid − merge(R = {t0, . . . , tn },attr , order)
9 if |R | ≤ OEE_SIZE then

10 oee − merge(R,attr , order)

11 else
12 hybrid − merge({t0, . . . , tn/2},attr , order)

13 hybrid − merge({tn/2+1, . . . , tn },attr , order)

14 for i ∈ {2, 4, . . . ,n − 2} do
15 toSwap ← ((ti [attr] ≤ ti+1[attr]) = order)

16 cwrite(toSwap, t ′i , ti+1, ti)

17 cwrite(toSwap, t ′i+1, ti , ti+1)

18 ti ← t ′i ; ti+1 ← t ′i+1

Finally, enabling Hermetic’s query planner to trade off

privacy and performance (Section 6) requires obliviously

collecting statistics about the input data. To do so, we in-

troduce two new primitives that leverage OEEs: histogram
that computes a histogram over the values in a given at-

tribute, and multiplicity that computes the multiplicity of

a attribute – i.e., the number of times that the most common

value appears.

5.2 Differentially-private padding
Hermetic adopts an efficient approach to mitigating OC ef-

fectively, without padding the number of output tuples of

an intermediate query operator to its worst-case value. It

7

determines the amount of padding to add based on a trun-

cated, shifted Laplace mechanism that ensures non-negative

noise size. In particular, for an operator Oi with estimated

sensitivity si – the maximum change in the output size that

can result from adding or removing one input tuple, and the

privacy parameter εi , ∆ ∼ Lap (oi , si/εi), where oi indicates
the offset of the shifted Laplace distribution from 0, dummy

tuples are added to the output if ∆ ≥ 0; Otherwise, 0 dummy

tuple is added. This mechanism provides (ε,δ)-differential
privacy [21], where δ corresponds to the probability of trun-

cation – i.e., δi = Ptrunc = Pr [Lap (oi , si/εi) < 0]. In addition,

Ptrunc is configured, as a system parameter in Hermetic, with

very small value to minimize leakage. Note that the idea of

applying differentially private padding to OC is not new,

and has been investigated in [1, 46]. But Hermetic enables

DP padding on operators, such as inner equi-join, that are

considered as future work of [1, 46]. Furthermore, the prob-

lem of optimizing a plan, the outputs of whose operators are

padded usingDP, for both privacy and efficiency is a challeng-

ing problem, and Hermetic introduces a new privacy-aware

query planner to address this challenge (Section 6).

To implement this approach, relations must be padded

with dummy tuples to hide the true size of query results.

As in prior work, we identify dummy tuples by adding an

additional isDummy attribute to each relation, adapt operators
like select, groupby, and join to add dummy tuples to their

results, and adapt query predicates to ignore tuples where

isDummy == TRUE (See Appendix C for details). Moreover,

the actual noise value must be kept hidden from an adversary.

As a result, the number of dummy tuples has to be sampled

in an enclave, and the sampling process must be protected

from side channels, especially timing [4].

6 Privacy-aware Query Planning
In this section, we describe how Hermetic assembles the op-

erators from the previous section into query plans that can

compute the answer to SQL-style queries. Query planning is

a well-studied problem in databases, but Hermetic’s use of

differential privacy adds a twist: Hermetic is free to choose

the amount of privacy budget ε it spends on each opera-

tor. Thus, it is able to make a tradeoff between privacy and

performance: smaller values of ε result in stronger privacy

guarantees but also add more dummy tuples, which slows

down subsequent operators.

Query planning in Hermetic follows the same design as

in [?], and Figure 2 illustrates the key query planning steps

for a counting query over three datasets:

Sensitivity estimation: For each possible execution plan

tree , Hermetic query planner derives the upper bound on

the sensitivities of all the operatorsOi in the plan. To do this,

the untrusted query planner could initiate auxiliary queries,

which we call leakage queries, to compute the number of

tuples in each operator’s output. For instance, in Figure 2, the

ε1

C
T P

Parameter
Optimization

Query
Plan Execution

ε0

ε2

ε3

σ
⋈

⋈
σ

location

c_id category

dob

Sensitivity
Estimation

Cost
Estimation

Leakage query:
SELECT multi(c_id)
FROM Trip T ⇒ 32

max(0,Lap(346/ε2,
32/ε2)) = Δ2➕

δ = Ptrunc=10-5

PrivC=ε0+ε2+ε3
PrivT=ε2+ε3
PrivP=ε1+ε3Δ0➕

Δ1➕

 min W•A•ε + fperf(ε)
s.t. A•ε ≤ B,
 0 < ε ≤ B.

1 10 1
0011
0101［ ］A=

W/B: privacy priority/bound
fperf(ε) = poly(ε)+poly(1/ε)

Figure 2. Query planning for query “SELECT count(*) FROM

C, T, P WHERE C.cid=T.cid AND T.location = P.location

AND C.age≤27 AND P.category=‘hospital’”.

planner uses a leakage select querywith the multiplicity
operator on the joined attribute, c_id, to get an upper bound

on the sensitivity of the leftmost join. The leakage queries

are differentially private just like ordinary queries, and their

(small) cost is charged to the (ε,δ) budget as usual; thus, the
planner does not need to be trusted.

Cost estimation: Hermetic planner estimates the symbolic

privacy and performance costs of the plan. The privacy cost

of a plan, each operatorOi of which is assigned with privacy

budget εi , is simply (
∑

i εi), but estimating the performance

cost is more challenging. To obtain a performance model,

we derived the complexity of the Hermetic operators as a

function of their input size; the key results are shown in

Table 1. Hermetic uses the histogram operator to estimate

the size of intermediate results, following [34, 75]. These

estimates are used only to predict the performance of the

query plans; thus, if the adversary were to carefully craft

the data to make the estimate inaccurate, the worst damage

they could do would be to make Hermetic choose a slower

query plan. To enable the planner to assess the performance

implications of the dummy tuples, Hermetic takes them into

account when estimating relation sizes, and the expected

number of dummy tuples added by operator Oi , following

the distribution Lap (oi , si/εi), is simply the offset oi .
Parameter optimization: Hermetic’s query planner uses

multi-objective optimization [86] to find the optimal query

plan that matches the user’s priorities. In particular, the user

specifies a vector of bounds, B, and a vector of weights,W,

for the privacy costs on all the input relations. The planner

outputs the plan, whose weighted sum of all the costs, in-

cluding privacy and performance whose weight is always 1,

is optimal, and all of the privacy costs are within the bounds.

We leave the details on the optimization technique in Ap-

pendix D due to space limit.

7 Implementation
To evaluate our approach, we built a prototype, which we

now describe, focusing on the hypervisor and OEEs.

8

Table 1. Cost model for Hermetic’s relational operators. n:
first input size; c: OEE capacity; m: second input size; k :
output size.

Operator Cost

hybrid-sort h(n) = n · log(c) + n · log2 (n/c)

select h(n)

groupby 3 · h(n)

join 4 · h(n +m) + 2 · h(m) + 3 · h(n) + 2 · h(k)

7.1 Hermetic hypervisor
Hermetic’s hypervisor extends Trustvisor [57], a compact,

formally verified [89] hypervisor. To enable OEEs to “lock

down” CPU cores, we added two hyper-calls — LockCore
and UnlockCore— to Trustvisor. LockCoreworks as follows:
(1) it checks that hyper-threading and prefetching are dis-

abled (by checking the number of logical and physical cores

using CPUID, and using techniques from [90]), (2) it disables

interrupts and preemption (3) it disables the RDMSR for non-

privileged instructions to prevent snooping on package-level

performance counters of the OEE’s core, (4) it flushes all

cache lines (with WBINVD2), (5) it uses CAT [66] to assign

a part of the LLC exclusively to the OEE core. UnlockCore
reverts actions 2–5 in reverse order. These changes required

modifying 300 SLoC of Trustvisor.

7.2 Oblivious execution environments
Recall that the goal of OEEs to is create an environment

where a carefully-chosen function can perform data-dependent

memory accesses that are unobservable to the platform. To

achieve this, we must make the function’s memory access

patterns un-observable and its timing predictable.

Un-observable memory accesses: To make memory ac-

cesses un-observable, we ensure that all reads and writes are

served by the cache: we disable hardware prefetching and

preload all data and code into the cache prior to executing

the function. To preload data, we use prefetcht02, which
instructs the CPU to keep the data cached, and we perform

dummy writes to prevent leakage through the cache coher-

ence protocol. To preload code, the function first executes in

preload mode to exercise all the code — loading it into the

icache — but processes the data deterministically. We align

all buffers, especially oee_buffer, to avoid cache collisions.

Predictable timing: To ensure that an OEE function’s ex-

ecution time is predictable regardless of the input data, we

employ a three-pronged approach. First, we statically trans-

form the function’s code to eliminate data dependent control

flow (See Algorithm 1) and instructions with data-dependent

timing. Second, although we allow the function’s memory

accesses to be data-dependent, we carefully structure it to

2
Note that the timing variations of clflush and prefetch that are exploited
in [30, 31] are not a problem for Hermetic simply because the memory

addresses, during flushing and preloading, are observable, in a deterministic

manner, to the adversary anyway.

Table 2. Experimental configurations and their resilience to

different channels (MS: merge-sort, BS: batcher-sort, HS:
hybrid-sort, CP: cartesian product, SMJ: sort-merge join).

Configuration Sort Join MC IC TC OC

NonObl MS SMJ ✗ ✗ ✗ ✗

DOA-NoOEE BS [6, 69] ✓ ✗ ✗ ✗

Full-Pad BS CP ✓ ✓ ✓ ✓

HMT I HS Section 5 ✓ ✓ ✓ ✗

HMT II HS Section 5 ✓ ✓ ✓ ✓

Table 3. Schema and statistics of the relations. Synthetic

was generated with a variety of tuples and multiplicities.

Query Relation Tuples Multiplicities

S1-3 Synthetic * *

Q4-6

Trips 10M m(cid)=32, m(loc.)=1019

Customers 4 · 1M m(cid)=1

Poi 0.01M m(loc.)=500

BDB1-3

rankings 1.08M m(url)=1

uservisits 1.16M m(url)=22

constrain the set of possible memory accesses, thereby mak-

ing the number of accesses that miss the L1 cache, and thus

must be served by slower caches, predictable. For example,

merge-sort (See Algorithm 1) performs a single pass over

the input and output buffers to ensure that there are few

cache misses per iteration. Finally, to account for timing vari-

ation that might occur in modern superscalar CPUs (e.g., due

to pipeline bubbles), we pad the OEE’s execution time to a

conservative upper bound that is calibrated to each specific

model of CPU. This bound is roughly double the execution

time and was never exceeded in our experiments. For more

information, see Appendix B.

7.3 Trusted computing base
Hermetic’s TCB consists of the runtime (3,995 SLoC) and the

trusted hypervisor (14,095 SLoC). The former may be small

enough for formal verification, and the latter has, in fact,

been formally verified [89] prior to our modifications. Recall

that the hypervisor would not be necessary with a future

TEE that natively supported “locking down” CPU cores.

8 Evaluation
This sections presents the results of our experimental evalu-

ation of Hermetic’s security and performance, a comparison

with Opaque, the current state-of-the-art, and a discussion of

the ability of Hermetic’s query planner to trade off privacy

and performance.

8.1 Experimental setup
Very recently, Intel has started offering CPUs that support

both SGX and CAT; however, we were unable to get access

to one in time. We therefore chose to experiment on an In-

tel Xeon E5-2600 v4 2.1GHz machine, which supports CAT,

with 4 cores, 40 MB LLC, and 64GB RAM. This means that

the numbers we report do not reflect any overheads due to

9

encryption in SGX, but, as previous work [99] reports, the

expected overhead of SGX in similar data-analytics appli-

cations is usually less than 2.4x. We installed the Hermetic

hypervisor and Ubuntu (14.04LTS) with kernel 3.2.0. We

disabled hardware multi-threading, turbo-boost, and H/W

prefetching because they can cause timing variations.

Table 2 shows the different system configurations we com-

pared, and the side channels they defend against. NonObl cor-

responds to commodity systems that take nomeasure against

side-channels; DOA-NoOEE uses data-oblivious algorithms

from previous work [6, 69], without any un-observable mem-

ory; Full-Pad pads output of all operators to the maximum

values: pads output of SELECT to the input size, and pads

output of join to the product of the two input sizes using

Cartesian join; and HMT I and HMT II implement the tech-

niques described in this paper – the only difference being

that the former does not add noise to the intermediate results.

Table 3 lists all the relations we used in our experiments.

The Trips relation has 5-days-worth of records from a real-

world dataset with NYC taxi-trip data [67]. This dataset

has been previously used to study side-channel leakage in

MapReduce [68]. Since the NYC Taxi and Limousine Com-

mission did not release data about the Customers and points
of interest (Poi) relations, we synthetically generated them.

To allow for records from the Trips relation to be joined

with the other two relations, we added a synthetic customer

ID attribute to the trips table, and we used locations from

the Trips relation as Poi’s geolocations. To examine the

performance of Hermetic for data with a variety of statistics,

we use synthetic relations with randomly generated data

in all attributes, except those that control the statistics in

question. We use the rankings and uservisits from Big

Data Benchmark (BDB) [2] for the comparison with Opaque.

8.2 OEE security properties
To verify the obliviousness of merge-sort (MS) and linear-
merge (LM), we created synthetic relations, populated with

random values and enough tuples to fill the available cache

(187, 244 tuples of 24 bytes each).
First, we used the Pin instrumentation tool [55] to record

instruction traces and memory accesses; as expected, these

depended only on the size of the input data. Second, we used

Intel’s performance counters to read the number of LLC

misses
3
and the number of accesses that were served by the

cache
4
; as expected, we did not observe any LLC misses in

any of our experiments. Finally, we used objdump to inspect

the compiler-generated code for instructions with operand-

dependent timing; as expected, there were none. More details

can be found in Appendix B.1.

3
Using the LONGEST_LAT_CACHE.MISS counter.

4
Using the MEM_UOPS_RETIRED.ALL_LOADS and MEM_UOPS_RETI-
RED.ALL_STORES counters.

 0

 200

 400

 600
S1

NonObl
DOA-NoOEE

HMT I

 0

 550

 1100

 1650

 0 2 4 6 8 10 12 14 16

S2T
im

e
 (

s
e

c
)

No. of Tuples (millions)

(a) S1&S2

 0

 70

 140

 210

 280

 32 64 128
 256

 512
 1024

 2048
 4096

T
im

e
 (

s
e

c
)

Multiplicity

ε: 1e-1,δ:1e-3
ε: 1e-2,δ:1e-3
ε: 5e-3,δ:1e-3
NonObl
DOA-NoOEE

ε: 1e-1,δ:1e-5
ε: 1e-2,δ:1e-5
ε: 5e-3,δ:1e-5
HMT I

(b) S3

Figure 3. Performance of select (S1), groupby (S2) and
join (S3) for different data sizes and join multiplicities.

Next, we verify the timing obliviousness of MS and LM in
OEE using cycle-level measurement. as expected, the execu-

tion time without padding could vary by tens of thousands

of cycles between data sets, but with padding, the variations

were only 44 and 40 cycles, respectively. (See Appendix B.3)

As Intel’s benchmarking manual [70] suggests, this residual

variation can be attributed to inherent inaccuracies of the

timing measurement code.

8.3 Performance of relational operators
Next, we examined the performance of Hermetic’s relational

operators: select, groupby and join. For this experiment

we used three simple queries (S1 − S3), whose query execu-

tion plans consist of a single relational operator. S1 selects
the tuples of a relation that satisfy a predicate, S2 groups a re-
lation by a given attribute and counts how many records are

per group. S3 simply joins two relations. To understand the

performance of the operators based on a wide range of pa-

rameters, we generated relations with different statistics (e.g.,

selection and join selectivities, join attribute multiplicities)

and used NonObl, DOA-NoOEE , and Hermetic to execute

queries S1 − S3 on these relations.

Figure 3(a) shows the results for queries S1 and S2 for rela-
tions of different size. In terms of absolute performance, one

can observe that HMT I can scale to relations with millions

of records, and that the actual runtime is in the order of

minutes. This is definitely slower than NonObl, but it seems

to be an acceptable price to pay for protection against side

channels, at least for some applications that handle sensi-

tive data. In comparison to DOA-NoOEE , HMT I achieves

a speedup of about 2x for all data sizes. S3 displays similar

behavior for increasing database sizes.

We also examined the performance of HMT II for query

S3 on relations of different multiplicities. The amount of

noise added to the output in order to achieve differential

privacy guarantee is proportional to −s/ε · ln(2δ), and sen-

sitivity s is equal to the maximum multiplicity of the join

attribute in the two relations. Figure 3(b) shows the perfor-

mance of HMT II with various ε and δ values, compared to

other configurations, and differential privacy only affects the

10

 1

 10

 100

 1000

 10000

 100000

Q4 Q5 Q6

1
x

2
3
.8

x

2
6
.2

x
2
6
.4

x
4
8
.7

x ?

1
x

1
6
.7

x
1
6
.8

x
1
6
.8

x
3
8
x

?

1
x

5
2
.3

x
6
2
.0

x
8
0
.2

x
1
0
8
.2

x ?

T
im

e
 (

s
e
c
)

NonObl
HMT I
HMT II (δ: 10

-3
)

HMT II (δ: 10
-5

)
DOA-NoOEE
Full-Pad

Figure 4. Performance of all configurations for Q4 – Q6.

 20

 40

 60

 80

 100

BDB1 BDB2 BDB3

T
im

e
 (

s
e
c
)

Opq-enc
Opq-obl
HMT I

HMT II
Full-pad

0
.3

5

3
.4

0

4
.6

6

4
.7

2

9
.6

3 3
0
.6

5

6
.1

2 2
0
.6

2

5
4
.1

2

6
.1

3 2
0
.6

2

6
0
.8

0

2665

Figure 5. Comparison with Opaque.

overall performance for very small ε , δ and large multiplicity

(around 200). In addition, the line for Full-Pad is missing as

it cannot finish the query within 7 hours due to its huge

padding overheads for tackling OC.

8.4 End-to-end performance
We compared the different system configurations on complex

query plans, each of which consists of at least one select,
groupby, and join operator. To perform this experiment,

we used the relations described in Table 3, as well as three

queries that perform realistic processing on the data. Q4

groups the Customer relation by age and counts how many

customers gave a tip of at most $10. Q5 groups the points

of interest relation by category, and counts the number of

trips that cost less than $15 for each category. Q6 counts the

number of customers that are younger than 30 years old and

made a trip to a hospital.

We measured the performance of all systems on these

three queries, and the results are shown in Figure 4. For HMT

II, the system optimized for performance, given a constraint

εmax ≤ 0.05 on the privacy budget, and we set δ = Ptrunc as
10
−3

and 10
−5

(Section 5.2). Full-Pad was not able to finish,

despite the fact that we left the queries running for 7 hours.

This illustrates the huge cost of using full padding to combat

the OC. In contrast, HMT II, which pads using differential

privacy, has only a small overhead relative to non-padded

execution (HMT I). This suggests that releasing a controlled

amount of information about the sensitive data can lead to

considerable savings in terms of performance. Also, note

how hybrid-sort helps Hermetic be more efficient than

previous oblivious processing systems (DOA-NoOEE), even

though it offers stronger guarantees.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
9

10
10

10
11

10
12

150x

C
o
s
t

Privacy weight

Priv.

Perf.

Figure 6. Total privacy and performance costs at various

points in the trade-off space.

8.5 Comparison with the state-of-the-art
We compare Hermetic with the state-of-the-art privacy-pres-

erving analytics system, Opaque [99] using the big data

benchmark (BDB) under the same configuration as in the

previous experiments. In particular, we measure the execu-

tion times of the first three queries in BDB (BDB1-3) on the

first 3 and 2 parts of the 1node version of the rankings and

uservisits datasets, respectively. Because the Hermetic

prototype only supports integer attributes, we replace all

VARCHAR and CHAR attributes with integers for both Her-

metic and Opaque. For Hermetic, we consider the mode

without differential privacy padding (HMT I) and the dif-

ferential padding mode with (ϵ = 10
−3,δ = 10

−5) (HMT II).

For Opaque, we consider the encryption (enc) and oblivi-

ous (obl) modes, and the oblivious memory size is fixed as

36MB. As the “oblivious pad mode” described in [99] is not

implement in the release Opaque version, we estimate its

performance using Hermetic’s Full-Pad mode on BDB3. We

also ensure that Hermetic and Opaque use the same query

plans for all three queries.

The comparison results are shown in Figure 5. First, with-

out differentially-private padding, Hermetic achieves com-

parable efficiency to Opaque in oblivious mode. The main

reason is that both Hermetic and Opaque leverage an un-

observable memory to accelerate the oblivious sort, and Her-

metic realizes such memory while Opaque simply assumes

it. The difference in BDB2 and BDB3 is caused by the differ-

ent implementations: Opaque requires two oblivious sorts

for both groupby and join while Hermetic uses three and

eleven oblivious sorts for groupby and join, respectively.
Hermetic could be optimized using the groupby algorithm
in Opaque with one fewer oblivious sort. The Opaque’s join,
although with fewer oblivious sorts, is restricted to primary-

foreign key join, and Hermetic’s join can handle arbitrary

inner equi-join, e.g. Q6. Second, because the sensitivities for

BDB are small (1 for BDB1-2 and 22 for BDB3), the overhead

from differential privacy padding in HMT II is very small

compared to HMT I. Third, Full-Pad is 43x slower than HMT

II due to huge padding overheads. In summary, even with

stronger security guarantees, Hermetic achieves comparable

efficiency to Opaque in oblivious mode. With comparable

guarantees, Hermetic out-performs Opaque (“oblivious pad

mode”) substantially.

11

8.6 Trading-off privacy and performance
We tested the Hermetic query planner with weight vectors

of various preferences to verify whether the planner could

adjust the total privacy cost of all relations and the overall

performance cost following the input weight vectors. We

set the weight on privacy of each relation in Q6 as identical,

and increased the relative weight over performance cost.

Figure 6 shows that the planner will sacrifice performance

for lower privacy consumption when privacy is the first

priority. The red dashed line indicates the performance cost

of a planwithout privacy awareness. Due to the unawareness,

the plan has to assign the minimal privacy parameter to

all the operators so as to handle the most private possible

queries, and this could lead to huge inefficiency, e.g., 150x

slow down, compared to Hermetic’s plans for less private

queries. Hermetic is also able to optimize the privacy cost on

the individual relations based on the analyst’s preferences,

as expressed by the weight vector as shown in [93].

9 Related Work
Mitigating side channels: To our knowledge, Hermetic is

the first practical system to offer rigorous protections against

four side channels simultaneously. However, Hermetic builds

on a substantial amount of prior work that inspired several

of its components: for instance, Vuvuzela [88] and Xiao et

al. [92] use differential privacy to obscure message sizes,

Flicker [58] and SeCAGE [54] run protected code on locked-

down cores, CaSE [97] executes sensitive code entirely in the

cache, CATalyst [53] uses Intel’s CAT against cache-based

side channels, and TRESOR [62] protect AES encryption

key from physical memory attacks by locking the secret

key inside persistent CPU registers. None of these systems

would work in our setting because they either cannot address

all the four side channels or cannot support the large-scale

federated data analysis. As we have tried to show, the devil is

usually in the details; thus, building a comprehensive defense

against several channels remains challenging.

It is well known that SGX, in particular, does not (and was

not intended to [43]) handle most side channels [17], and

recent work has already exploited several of them. These

include side channels due to cache timing [14], BTB [51],

and page faults [94]. Raccoon is a compiler that rewrites pro-

grams to eliminate data-dependent branches [77]. Its tech-

niques inspire the code modifications that Hermetic uses to

mitigate the IC and TC. Another challenge is the fact that IA-

32’s native floating-point instructions have data-dependent

timing; Hermetic uses libfixedtimefixedpoint [4] to re-

place them. Some solutions aim to detect the channels [15,

16, 80] rather than block them, and their effectiveness highly

depends on how the adversary attacks, and the adversary in

our threat model can easily bypass their detection.

We emphasize again that, after the discovery of the Fore-

shadow attack [87], current SGX implementations are no

longer secure. However, the underlying problem is with the

implementation and not with the design, so Intel should be

able to fix it in its next generation of CPUs. Hermetic as-

sumes a correct implementation of SGX – an assumption it

shares with the entire literature on SGX-based systems.

Oblivious RAMs [27, 61, 82, 83] can eliminate leakage

through MC in arbitrary programs, but they suffer from poor

performance in practice [77]. Moreover, ORAMs only hide

the addresses being accessed, not the number of accesses,

which could itself leak information [99].

Hermetic cannot fully mitigate physical side channels,

such as power analysis [48] or electromagnetic emanations [49]

because the underlying CPU does not guarantee that its in-

structions are data-oblivious with respect to them. (Intel

claims that AES-NI is resilient to digital side-channels, but

does not mention others [32].) However, these channels are

most often exploited to infer a program’s instruction trace,

so, by making the IC of a query data-oblivious, Hermetic

likely reduces these effectiveness of these channels.

Analytics on encrypted data: In principle, privacy-preserv-
ing analytics could be achieved with fully homomorphic en-

cryption [25] or secure multi-party computation [10], but

these techniques are still orders of magnitude too slow to

be practical [10, 26]. As a result, many systems use less than

fully homomorphic encryption that enables some queries

on encrypted data but not others. This often limits the ex-

pressiveness of the queries they support [71, 72]. In addition,

some of these systems [28, 59, 76] have been shown to leak

considerable information [20, 29, 64].

Alternatively, several systems [5, 8, 79] rely on TEEs or

other trusted hardware. As in Hermetic, sensitive data is

protected with ordinary encryption, but query processing

is performed on plaintext inside enclaves. But, due to the

limitations of TEEs discussed earlier, these systems do not

address side channels.

Oblivious data analytics: M2R [19] and Ohrimenko et

al. [68] aim to mitigate the OC in MapReduce. Both systems

reduce OC leakage, but they use ad hoc methods that still

leak information about the most frequent keys. By contrast,

Hermetic’s OC mitigation, based on differential privacy, is

more principled. To address the MC in databases, Arasu et

al. [6] introduce a set of data-oblivious algorithms for re-

lational operators, based on oblivious sort. Ohrimenko et

al. [69] extend this set with oblivious machine learning al-

gorithms. Hermetic enhances these algorithms by making

them resistant to IC, TC, and OC leakage and by speeding

them up significantly using an OEE.

Opaque [99] is similar to Hermetic in that it combines

TEEs, oblivious relational operators, and a query planner,

and in that it shows substantial performance gains when

small data-dependent computations are performed in oblivi-

ous execution environment. The key differences to Hermetic

are: 1) Opaque does not mitigate the IC or TC, and it miti-

gates the OC by padding up to a public upper bound, which

12

may be difficult to choose; and 2) by assuming (!) that the

8MB L3 cache of a Xeon X3 is oblivious, Opaque’s imple-

mentation effectively assumes the existence of an OEE, but

does not show how to concretely realize one. Hermetic’s

OEE primitive would be one way for Opaque to satisfy this

requirement, and it would also add protections against two

additional side channels.

There are systems [1, 12, 46] that combine TEEs and differ-

ential privacy for privacy-preserving data analysis. Prochlo [12]

is focused on side channels during data collection, and could

benefit from our techniques for protection during data anal-

ysis. The past year has seen the first work [1, 46] that in-

vestigates using differential privacy to compute padding for

the OC in a data analytics system. This work proposes al-

gorithms for several query operators, such as range queries,

but its leaves supporting a more functional subset of SQL

that includes joins to future work. It also does not address

how to integrate the privacy budget into query planning.

Query planning: There is some prior work on query plan-

ning with differential privacy; for instance, Pioneer [73] finds

query plans that minimize ε and reuses earlier results when

possible. However, we are not aware of any other work that

jointly considers budget and performance, or that can trade

one for the other, as Hermetic does with the leakage queries.

Workshop paper: We previously sketched Hermetic in a

workshop paper [93]. The present paper improves on [93] by

i) describing mitigations for all four side channels, instead

of just one; and ii) presenting the results of a comprehensive

evaluation.

10 Conclusion
In this paper, we have presented a principled approach to

closing the four most critical side channels: memory, in-

structions, timing, and output size. Our approach relies on

a new primitive, hardware-assisted oblivious execution en-

vironments, new query operators that leverage differential

privacy, and a novel privacy-aware query planner. Our ex-

perimental evaluation shows that Hermetic is competitive

with previous privacy-preserving systems, even though it

provides stronger privacy guarantees.

References
[1] J. Allen, B. Ding, J. Kulkarni, H. Nori, O. Ohrimenko, and S. Yekhanin.

An algorithmic framework for differentially private data analysis on

trusted processors. CoRR, 2018.

[2] AMPlab, University of California, Berkeley. Big data benchmark.

https://amplab.cs.berkeley.edu/benchmark/.
[3] Anati, Ittai and Gueron, Shay and Johnson, Simon P. and Scar-

lata, Vincent R. Innovative Technology for CPU Based Attestation

and Sealing (March, 2017). https://software.intel.com/en-us/articles/
innovative-technology-for-cpu-based-attestation-and-sealing.

[4] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and

H. Shacham. On subnormal floating point and abnormal timing. In

Proc. IEEE Symp. on Security & Privacy, 2015.

[5] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy,

and R. Venkatesan. Orthogonal security with cipherbase. In Proc. CIDR,

2013.

[6] R. K. Arvind Arasu. Oblivious query processing. In Proc. ICDT, 2014.

[7] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation

of timing channels. In Proc. CCS, Oct. 2010.

[8] S. Bajaj and R. Sion. Trusteddb: A trusted hardware based database

with privacy and data confidentiality. In Proc. SIGMOD, 2011.

[9] K. E. Batcher. Sorting networks and their applications. In Proc. AFIPS

’68 (Spring), 1968.

[10] J. Bater, G. Elliott, C. Eggen, S. Goel, A. Kho, and J. Rogers. Smcql:

Secure querying for federated databases. Proc. VLDB Endowment,

10(6):673–684, Feb. 2017.

[11] J. Beekman. Improving cloud security using secure enclaves. Technical

Report No. UCB/EECS-2016-219, University of California, Berkeley,

2016.

[12] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,

D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. Prochlo:

Strong privacy for analytics in the crowd. In Proc. SOSP, 2017.

[13] M. Brandenburger, C. Cachin, M. Lorenz, and R. Kapitza. Rollback

and forking detection for trusted execution environments using light-

weight collective memory. Technical Report arXiv:1701.00981, arXiv,

2017.

[14] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.

Sadeghi. Software grand exposure: Sgx cache attacks are practical.

Technical Report arXiv:1702.07521, arXiv, 2017.

[15] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan,

M. Sherr, and W. Zhou. Detecting covert timing channels with time-

deterministic replay. In Proceedings of the 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI’14), Oct. 2014.

[16] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged

side-channel attacks in shielded execution with Déjà Vu. In Proc.

ASIACCS, 2017.

[17] V. Costan and S. Devadas. Intel sgx explained. Technical Report Report

2016/086, Cryptology ePrint Archive, 2016.

[18] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hardware

extensions for strong software isolation. In Proc. 25th USENIX Security,

2016.

[19] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang. M2r:

Enabling stronger privacy in mapreduce computation. In Proc. USENIX

Security, 2015.

[20] F. B. Durak, T. M. DuBuisson, and D. Cash. What else is revealed by

order-revealing encryption? In Proc. CCS, 2016.

[21] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our

data, ourselves: Privacy via distributed noise generation. Proc. EURO-

CRYPT, 2006.

[22] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to

sensitivity in private data analysis. In Proc. TCC, 2006.

[23] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and differential

privacy. In Foundations of Computer Science (FOCS), 2010 51st Annual

IEEE Symposium on, pages 51–60. IEEE, 2010.

[24] S. Eskandarian and M. Zaharia. An oblivious general-purpose SQL

database for the cloud. CoRR, 2017.

[25] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proc.

STOC, 2009.

[26] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of

the aes circuit. Technical Report Report 2012/099, Cryptology ePrint

Archive, 2012.

[27] O. Goldreich and R. Ostrovsky. Software protection and simulation on

oblivious rams. J. ACM, 43(3):431–473, May 1996.

[28] Google. Encrypted bigquery client, 2016.

[29] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart.

Leakage-abuse attacks against order-revealing encryption. In Proc.

CCS, 2017. To appear.

[30] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard. Prefetch

side-channel attacks: Bypassing smap and kernel aslr. In Proc. CCS,

13

https://amplab.cs.berkeley.edu/benchmark/
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing

2016.

[31] D. Gruss, C. Maurice, K. Wagner, and S. Mangard. Flush+flush: A fast

and stealthy cache attack. In Proc. DIMVA, 2016.

[32] Gueron, Shay. Intel Advanced Encryption Standard (IntelÂő AES) In-

structions Set (March, 2017). https://software.intel.com/en-us/articles/
intel-advanced-encryption-standard-aes-instructions-set.

[33] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-Based WCET

Estimation and Validation. In 9th International Workshop on Worst-

Case Execution Time Analysis (WCET’09), 2009.

[34] B. Harangsri. Query result size estimation techniques in database systems.

PhD thesis, The University of New South Wales, 1998.

[35] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce,

and A. Roth. Differential privacy: An economic method for choosing

epsilon. In Proc. CSF), July 2014.

[36] W.-M. Hu. Reducing timing channels with fuzzy time. In Proc. IEEE

Symp. on Security & Privacy, May 1991.

[37] Intel. Combined Volume Set of IntelÂő 64 and IA-32 Architectures

Software Developers Manuals (May, 2018). https://software.intel.com/
en-us/articles/intel-sdm.

[38] Intel Corporation. Intel Software Guard Extensions SDK, Developer

Reference (April, 2017). https://software.intel.com/en-us/sgx-sdk/
documentation.

[39] Intel Corporation. Intel Trusted Execution Technology: White

Paper (April, 2017). http://www.intel.com/content/www/us/
en/architecture-and-technology/trusted-execution-technology/
trusted-execution-technology-security-paper.html.

[40] Intel Corporation. IntelÂő 64 and IA-32 Architec-

tures Optimization Reference Manual. https://www.intel.
com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf.

[41] Intel Corporation. Speculative execution side chan-

nel mitigations, revision 2.0, May 2018. Available at

https://software.intel.com/sites/default/files/managed/c5/63/
336996-Speculative-Execution-Side-Channel-Mitigations.pdf.

[42] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query

optimization. In Proc. VLDB, 1992.

[43] S. Johnson. Intel SGX and side channels. https://software.intel.com/
en-us/articles/intel-sgx-and-side-channels, Mar. 2017.

[44] P. Kairouz, S. Oh, and P. Viswanath. The composition theorem for

differential privacy. In Proceedings of The 32nd International Conference

on Machine Learning, pages 1376–1385, 2015.

[45] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump. IEEE

TSE, 22:329–338, May 1996.

[46] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Accessing data while

preserving privacy. CoRR, 2017.

[47] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-

gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting

speculative execution. ArXiv e-prints, Jan. 2018.

[48] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Proc.

CRYPTO, 1999.

[49] M. G. Kuhn. Compromising emanations: eavesdropping risks of computer

displays. PhD thesis, University of Cambridge, 2002.

[50] B. W. Lampson. A note on the confinement problem. CACM, 16:613–

615, Oct. 1973.

[51] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring

fine-grained control flow inside SGX enclaves with branch shadowing.

In Proc. Usenix Security, Aug. 2017.

[52] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv

e-prints, Jan. 2018.

[53] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. Lee.

CATalyst: Defeating last-level cache side channel attacks in cloud

computing. In Proc. HPCA, 2016.

[54] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting memory

disclosure with efficient hypervisor-enforced intra-domain isolation.

In Proc. CCS, 2015.

[55] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,

V. J. Reddi, and K. Hazelwood. Pin: Building customized program

analysis tools with dynamic instrumentation. In Proc. PLDI, 2005.

[56] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,

A. Juels, and S. Capkun. Rote: Rollback protection for trusted execution.

Technical Report Report 2017/048, Cryptology ePrint Archive, 2017.

[57] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.

Trustvisor: Efficient tcb reduction and attestation. In Proc. IEEE Symp.

on Security & Privacy, 2010.

[58] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:

An execution infrastructure for TCB minimization. In Proc. EuroSys,

2008.

[59] Microsoft. Sql server 2016 always encrypted (database engine), 2016.

[60] R. Misener and C. A. Floudas. Piecewise-linear approximations of

multidimensional functions. J. Optim. Theory Appl., 145(1):120–147,

2010.

[61] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. Oblix: An

efficient oblivious search index. In Proc. S&P, 2018.

[62] T.Müller, F. C. Freiling, andA. Dewald. Tresor runs encryption securely

outside ram. In Proc. USENIX Security, 2011.

[63] J. Murtagh and S. Vadhan. The complexity of computing the optimal

composition of differential privacy. In Theory of Cryptography, pages

157–175. Springer, 2016.

[64] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-

preserving encrypted databases. In Proc. CCS, 2015.

[65] Nguyen, Khang T. Introduction to Cache Allocation Technology in the

Intel Xeon Processor E5 v4 Family. https://software.intel.com/en-us/
articles/introduction-to-cache-allocation-technology.

[66] Nguyen, Khang T. Usage Models for Cache Allocation Technology

in the Intel Xeon Processor E5 v4 Family. https://software.intel.com/
en-us/articles/cache-allocation-technology-usage-models.

[67] NYC Taxi & Limousine Commission. TLC Trip Record Data (April,

2017). http://www.nyc.gov/html/tlc/html/about/trip_record_data.
shtml.

[68] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss, and

D. Sharma. Observing and preventing leakage in mapreduce. In Proc.

CCS, 2015.

[69] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,

K. Vaswani, and M. Costa. Oblivious multi-party machine learning on

trusted processors. In Proc. USENIX Security, 2016.

[70] G. Paoloni. How to Benchmark Code Execution Times

on Intel IA-32 and IA-64 Instruction Set Architectures.

http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf.

[71] A. Papadimitriou, R. Bhagwan, N. Chandran, R. Ramjee, A. Haeberlen,

H. Singh, A. Modi, and S. Badrinarayanan. Big data analytics over

encrypted datasets with Seabed. In Proc. OSDI, 2016.

[72] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T.Malkin, S. G. Choi,W. George,

A. Keromytis, and S. Bellovin. Blind seer: A scalable private dbms. In

Proc. IEEE Symp. on Security & Privacy, 2014.

[73] S. Peng, Y. Yang, Z. Zhang, M. Winslett, and Y. Yu. Query optimization

for differentially private data management systems. In Proc. ICDE,

2013.

[74] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard. DRAMA:

Exploiting DRAM addressing for cross-cpu attacks. In Proc. USENIX

Security, 2016.

[75] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the num-

ber of tuples satisfying a condition. SIGMOD Record, 14(2):256–276,

1984.

[76] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.

CryptDB: Protecting confidentiality with encrypted query processing.

14

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/sgx-sdk/documentation
https://software.intel.com/en-us/sgx-sdk/documentation
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
http://www.intel.com/content/www/us/en/architecture-and-technology/trusted-execution-technology/trusted-execution-technology-security-paper.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/cache-allocation-technology-usage-models
https://software.intel.com/en-us/articles/cache-allocation-technology-usage-models
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

In Proc. SOSP, 2011.

[77] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital side-channels

through obfuscated execution. In Proc. USENIX Security, 2015.

[78] R. M. Rogers, A. Roth, J. Ullman, and S. P. Vadhan. Privacy odometers

and filters: Pay-as-you-go composition. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems 29, pages 1921–1929. Curran Associates,

Inc., 2016.

[79] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-

Ruiz, and M. Russinovich. VC3: Trustworthy data analytics in the

cloud using SGX. In Proc. IEEE Symp. on Security & Privacy, 2015.

[80] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating

controlled-channel attacks against enclave programs. In Proc. NDSS,

2017.

[81] S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks.

In Proc. CHES, 2002.

[82] E. Stefanov and E. Shi. Multi-cloud oblivious storage. In Proc. CCS,

2013.

[83] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-

vadas. Path oram: An extremely simple oblivious ram protocol. In

Proc. CCS, 2013.

[84] R. Strackx and F. Piessens. Ariadne: A minimal approach to state

continuity. In Proc. USENIX Security, Aug. 2016.

[85] S. Tople and P. Saxena. On the trade-offs in oblivious execution tech-

niques. In Proc. DIMVA, 2017.

[86] I. Trummer and C. Koch. Approximation schemes for many-objective

query optimization. In Proc. SIGMOD, June 2014.

[87] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,

M. Silberstein, T. Wenisch, Y. Varom, and R. Strackx. Foreshadow:

Extracting the keys to the Intel SGX kingdom with transient out-of-

order execution. In Proc. USENIX Security, 2018.

[88] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:

Scalable private messaging resistant to traffic attacks. In Proc. SOSP,

2015.

[89] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta.

Design, implementation and verification of an extensible and modular

hypervisor framework. In Proc. IEEE Symp. on Security & Privacy, 2013.

[90] V. Viswanathan. Disclosure of H/W prefetcher control on

some Intel processors. https://software.intel.com/en-us/articles/
disclosure-of-hw-prefetcher-control-on-some-intel-processors.

[91] N. Weichbrodt, A. Kurmus, P. R. Pietzuch, and R. Kapitza. Async-

shock: Exploiting synchronisation bugs in intel SGX enclaves. In Proc.

ESORICS, 2016.

[92] Q. Xiao, M. K. Reiter, and Y. Zhang. Mitigating storage side channels

using statistical privacy mechanisms. In Proc. CCS, 2015.

[93] M. Xu, A. Papadimitriou, A. Feldman, and A. Haeberlen. Using dif-

ferential privacy to efficiently mitigate side channels in distributed

analytics. In Proceedings of the 11th European Workshop on Systems

Security (EuroSec ’18), Apr. 2018.

[94] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deter-

ministic side channels for untrusted operating systems. In Proc. IEEE

Symp. on Security & Privacy, 2015.

[95] Y. Yarom and K. Falkner. Flush+reload: A high resolution, low noise,

l3 cache side-channel attack. In Proc. USENIX Security, 2014.

[96] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster computing. In Proc.

NSDI, 2012.

[97] N. Zhang, K. Sun, W. Lou, and Y. T. Hou. CaSE: Cache-assisted secure

execution on ARM processors. In Proc. Oakland, 2016.

[98] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-vm side

channels and their use to extract private keys. In Proc. CCS, 2012.

[99] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and

I. Stoica. Opaque: An oblivious and encrypted distributed analytics

platform. In Proc. NSDI, 2017.

A Query operators
A.1 List of query operators
Query processing in Hermetic is built upon a set of obliv-

ious operators. From the bottom up, we have OEE opera-

tors that support simple sort and merge, auxiliary operators

that support relation transformations, including re-ordering,

grouping, expansion, etc. and statistics, relational operators

that support well-known SQL-style query processing. We

describe all the operators below, together with their defi-

nitions and oblivious constructions. We also mark the one

unique in Hermetic as HMT, and other from previous work

with citations:

OEE Operators
HMT merge-sort Given an array of tuples that fits inside OEE

and the set of order-by attributes, sort them in the order

of the given attributes.

HMT linear-merge Given two arrays of sorted tuples, that to-

gether fit inside OEE and the set of order-by attributes,

merge them into one sorted array of tuples with one linear

scan.

Auxiliary Operators
HMT hybrid-sort Given an array of tuples, beyond the capac-

ity of OEE, and a set of order-by attributes, sort them in

the order of the given attributes. Algorithm 4 shows the

pseudo-code of hybrid-sort (Lines 10-17).

HMT hybrid-merge Given two arrays of sorted tuples, that to-

gether are beyond the capacity of OEE and the set of order-

by attributes, merge them into one sorted array of tuples.

Algorithm 4 shows the pseudo-code of hybrid-merge
(Lines 18-31).

[6] augmentGiven a relation, a function and an attribute name,

returns a relation whose attributes consist of the given

relation’s attributes and the given attribute, and each row

of which is the corresponding row in the given relation

extended with the value of the function applied on the

that row.

[6] filter Given a relation and a predicate on a set of at-

tributes, return a relation that consists of all the rows from

the given relation that satisfy the predicate. Algorithm 4

shows how to construct filter using hybrid-sort (Lines 1-
9): first, augment the relation with "mark" equal to 1 if the

row satisfy the predicate or 0 otherwise. Second, hybrid-sort
the relation on "mark" to in descending order so that all

the rows with "mark" equal to 1 are at the front. Finally,

return all the rows that satisfy the predicate at the front.

[6] groupId Given a relation, a set of aggregate-on attributes,

group the rows based on the aggregate-on attributes, and

augment the relation with the group internal ID, starting

from 1. The groupId operator could be constructed by first
sorting the relation on the aggregate-on attributes using

15

https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors
https://software.intel.com/en-us/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors

hybrid-sort, and then keeping a running counter as the

group internal ID while scanning over the sorted relation

and extending each row with the group internal ID.

[6] group-running-sum Given a relation, a set of aggregate-

on attributes, a summation attribute and a new attribute,

augment the relation with the new attribute whose value

is the running sum over the summation attribute, in the

reverse order of the group internal ID, within each group

of the aggregate-on attributes. The group-running-sum
operator could be constructed by first applying groupId,
then sorting the relation on the aggregate-on attributes,

plus the group ID attribute in descending order, using

hybrid-sort, and finally keeping a running sum over

the summation attribute while scanning over the sorted

relation and extending each row with the running sum.

[6] semijoin-aggregation Given two relations and a set of

join attributes, augment each of the two relations with the

number of matches, i.e. join degree, on the given set of

join attributes from the other relation. To augment the first
relation with the join degree, first augment each relation

with attribute "src", e.g. 1(0) for the first(second) relation,

union the two relations, and then hybrid-sort it on the

join attributes plus the "src" attribute in ascending order.

Then augment the relation with running counter of the

rows in each group of the join attributes, but only incre-

ment the counter if the "src" is equal to 0. Finally, apply

filter to keep rows with "src" equal to 1. Then, repeat

on the second relation by switching the order.

[6, 69] expandGiven one relation from the semijoin-aggregation
output, duplicate each row by the times, equal to the num-

ber of matches, in the order of the join attributes. In Her-

metic, this operation will leak the differentially private

total join size.

[6] stitchGiven two relations from expand, return a relation
whose i-th row is the concatenation of the i-th rows from

the two given relations.

HMT histogram Given a relation and a target attribute, returns

a histogram over the given attribute of the relation. In

Hermetic, we first hybrid-sort the relation on the target

attribute, and then keep a running counter, refreshed to 0

at the beginning of each histogram bucket, and augment
the relation with the running counter if the row is the last

of the bucket, or -1 otherwise. Finally, hybrid-sort the

relation on the augmented attribute in descending order,

and return the rows with non-negative values.

HMT multiplicity Given a relation and a set of target at-

tributes, calculates the number of times that the most com-

mon values of the target attributes appear in the relation.

In Hermetic, we first hybrid-sort the relation on the set

of target attributes, and then keep a counter on the most

common values while scanning over the relation.

Relational operators

• project Given a relation and a set of attributes, returns a

relation, each row of which is a projection, onto the given

attributes, of the corresponding row in the input relation.

• rename Given a relation and a set of old and new names,

returns a relation, whose specified attributes are renamed

from old to new given names.

• union Given two relations, returns a relation whose at-

tribute set is the union of the two relations and that con-

tains all the rows from the two relations, with new at-

tributes filled by null.

[6] select Given a relation and a predicate on a set of at-

tributes, return a relation that consists of all the rows from

the given relation that satisfy the predicate. The select
operator could be constructed with one filter directly.

[6] groupby Given a relation, a set of aggregate-on attributes,

an accumulate function and a new accumulate attribute

name, group the rows in the given relation by the aggregate-

on attributes, apply the accumulate function on each group

and returns the aggregate-on attributes and the accumu-

lation of each group. The groupby operator could be con-

structedwith one groupId, followed by a group-running-sum,
and, finally, a filter to keep the aggregate results only.

• orderby Given a relation and a set of order-by attributes,

order the rows in the input relation by the order-by at-

tributes. The orderby operator could be constructed with

one hybrid-sort directly.

• cartesian-product Given two relations, returns a rela-

tion that consists of the concatenations of every pair of

rows, one from the first relation and the other from the

second relation.

[6] join Given two relations and a set of join attributes, re-

turns a relation with every pair of matches from the two

relations on the join attributes. The join operator could
be constructed by first deriving the join degree of each

row using semijoin-aggregation, then expanding each

row by its join degree using expand and finally joining

the two expanded relations using sticth to get the join

result.

Algorithm 4: The oblivious filter operator

1 func filter(R = {t0, t1, ..., tn }, p)
2 osize← 0

3 foreach t ∈ R do
4 cwrite(p(t),match, 1, 0)

5 t ← t ∪ {(’mark’,match)}

6 osize← osize +match

7 hybrid − sort(R, ’mark’, desc = 0)

8 return R[0 : osize]

16

Table 4. Every x86 instruction used in Hermetic OEE

add addl cmovbe cmove
cmovg cmovle cmovne cmp
cmpl imul ja jae
jb jbe je jmp
jne lea mov movl

movzbl pop push ret
setae setb setbe sete
setg setle setne shl
shll sub test

B Predictable timing for OEE operators
Hermetic currently performs two operations within OEEs,

merge-sort and linear-merge. As discussed in Section 7.2,

althoughOEEs allow these operators to perform data-dependent

memory accesses (which is why they are faster than purely

data-oblivious operators), they are carefully structured to

avoid data-dependent control flow and instructions and to

constrain the set of possible memory accesses. The latter

makes the number of accesses that miss the L1 cache, and

thus must be served by slower caches, predictable. Moreover,

their execution time is padded to a conservative upper bound

calibrated to a specific model of CPU. This section describes

these measures in more detail.

B.1 Avoiding data-dependent control flow and
instructions

Weensure that OEE operators’ code is free from data-dependent

branches using techniques similar to [77]. Furthermore, we

limit the set of instructions that they use to avoid those with

data-dependent timing. Table 4 lists all of the x86 instruc-

tions that are used by the operators that run in an OEE. The

instructions marked in dark green have constant execution

time, as verified by Andrysco et al. [4]. The instructions

in light green were not among the instructions verified by

Andrysco et al., but are either variants of them or, as is the

case with cmov*, are known to be constant time [77].

B.2 Making L1 cache misses predictable
By construction, all memory accesses performed by OEE

operators are served from the cache. Moreover, they have

deterministic control flow, and therefore perform a fixed

number of memory accesses for a given input size. For exam-

ple, Algorithm 5 shows the pseudocode for OEE merge-sort.
Note that the two running pointers that scan over the two

sublists will keep accessing the data even if one of the sub-

lists has been completely merged (Lines 9 and 10). This will

not affect the correctness due to the modified merge condi-

tion (Line 11), but it will make the total number of memory

accesses on each input deterministic. Nevertheless, the oper-

ators’ timing could vary depending on whether accesses hit

the L1 cache or whether they have to be served by slower

caches.

Algorithm 5: The merge-sort supported in OEE.

1 func merge − sort({R = {t0, t1, . . . , tn } :
B}, real,′′ , ascend)

2 for len ∈ {20, 21, . . . , 2loд2 (n) } do
3 for o f f set ∈ {0, 2 · len, . . . ,n − 2 · len} do
4 pos0 ← o f f set ;

5 pos1 ← o f f set + len;

6 mov eax, len; add eax, eax

7 mov ebx, pos0; mov ecx, pos1
8 lea edx, [ebx]; lea edi, [ecx]

9 LOOP: cmp edx, edi

10 cmovle esi, edx; cmovg esi, edi

/* Merge [pos0] if pos1 ≥ 2 · len */

11 mov esi, len; mov esi, esi

12 cmp esi, ecx; cmovle esi, edx

/* Merge [pos1] if pos0 ≥ len */

13 mov esi,len; cmp esi, ebx

14 cmovle esi, edi

15 mov [-eax], esi

/* update pos0 */

16 mov esi, $0; cmp edx, edi

17 cmovle esi,$1; add ebx, esi

18 mov esi, len; cmp ebx, esi

19 cmovg ebx, esi

/* update pos1 */

20 mov esi, $0; cmp edx, edi

21 cmovg esi, $1; add ecx, esi

22 mov esi, len; add esi,esi

23 cmp ecx, esi; cmovg ecx, esi

/* load the next item */

24 cmp edx, edi; cmovle esi, ebx

25 cmovg esi, ecx; lea esi, [esi]

26 cmovle edx, esi; cmovg edi,esi

/* decrement the counter */

27 sub eax,$1; cmp eax,$0;ja LOOP

28 R[o f f set : o f f set + 2 · len]← B[o f f set :

o f f set + 2 · len];

 524520
 524560
 524600
 524640

 0 5 10 15 20 25 30 35

C
y
c
le

s
 (

K
)

Test No.

no padding
 832660

hermetic

 4.826x10
6

spec
 2.25353x10

7

L3

(a) MS

 41760
 41780
 41800
 41820

 0 5 10 15 20 25 30 35

C
y
c
le

s
 (

K
)

Test No.

no padding
 81970

hermetic

 413295

spec
 4.826x10

6

L3

(b) LM

Figure 7. Cycle-resolution measurements of the actual tim-

ing of merge-sort (MS) and linear-merge (LM) inside the
OEE, and their padded timing, respectively.

17

0 2 4 6 8 10
Access No.(×105)

0xf73140

0xfa3e80

0xfd4bc0

0x1005900

0x1036640

A
d

d
re

ss

(a) Sorted

0 2 4 6 8 10
Access No.(×105)

0xf73140

0xfa3e80

0xfd4bc0

0x1005900

0x1036640

A
d

d
re

ss

(b) Reverse

0 2 4 6 8 10
Access No.(×105)

0xf73140

0xfa3e80

0xfd4bc0

0x1005900

0x1036640

A
d

d
re

ss

(c) Random

Figure 8.Memory access patterns of OEE merge-sort on sorted, reverse sorted and random input.

To address this problem, we could determine an upper

bound on an operator’s execution time by assuming that all

of its memory accesses are served from the L3 cache, but this

would be wildly conservative. In particular, it would result in

a 43x slowdown for OEE merge-sort and a 33x slowdown

for OEE linear-merge (see Figure 7). Instead, we carefully
structure each operator’s code to make the number of L1

cache misses predictable. For example, if we examine the

code of merge-sort, we can see that its memory accesses

adhere to three invariants:

1. Each merge iteration accesses one of the same tuples as the

previous iteration. Figure 8 shows the memory traces of

merge-sort on 32,768 input tuples that have been sorted,

reverse sorted, and permuted randomly.With sorted input,

the two running pointers (Lines 9 and 10 in Algorithm 5)

follow the invariant: the second pointer keeps accessing

the first tuple of the second sub-list until the first pointer

finishes scanning through the first sub-list. Then, the first

pointer keeps accessing the last tuple of the first sub-list

until the second pointer reaches the end of the second

sub-list. The same memory access pattern holds even with

reverse sorted and randomly permuted inputs because

only one of the two running pointers would advance after

each merge iteration. If we assume that a tuple can fit in

a single L1 cache line, as is the case in our examples, then

one of the two memory accesses in each iteration will be

an L1 hit.

2. Merge iterations access the input tuples sequentially. The

merge loop (Lines 6–15) accesses the tuples in each of the

input sub-lists sequentially. Consequently, if each tuple

is smaller than an L1 cache line, then accessing an initial

tuple will cause subsequent tuples to be loaded into the

same cache line. Assuming that the L1 cache on the OEE’s

CPU is large enough – as is the case in our experiments

– these subsequent tuples will not be evicted from the

cache between merge loop iterations, and future accesses

to them will be L1 hits. If a cache line is of CL bytes and

each tuple is of TP bytes, then at least 1 − T P
CL of the tuple

accesses will be L1 hits.

3. Local variables are accessed on every iteration. Since merge-sort
is not recursive, the variables local to the merge loop

(Lines 7–14) are accessed on every iteration. Furthermore,

because more cache lines are allocated to the OEE than

local variables and tuples, these accesses should be L1 hits

as well.

Given these invariants, it is possible to express the lower

bound on L1 hits as a formula. Let N be the number of tuples

per OEE input block, FPR as the number of fields in each

tuple, and FNO as the number of fields used as keys for

sorting. Then, the lower bound is given by:

Lms = (77 + 11 ∗ FNO + 12 ∗ FPR) ∗ N ∗ loд(N)

+ (1 −
FPR

16

) (12 + FPR) ∗ N ∗ loд(N)

+ 5N ∗ loд(N) +
15

4

N ∗ loд(N)

(1)

A similar analysis can be done for linear-merge, resulting
in the following lower bound formula:

Llm = (69 + 24 ∗ FNO + 11 ∗ FPR) ∗ N + 14

+ (1 −
FPR

16

) (12 + FNO + FPR) ∗ N

+
15

4

N

(2)

Plugging in the values for N , FPR, FNO from our exper-

imental data, we can see that the majority of accesses are

served by the L1 — approximately 89.06% and 79.73% for

merge-sort and linear-merge, respectively.

B.3 Determining a conservative upper bound on
execution time

Even though the number of L1 cache misses is predictable

regardless of the input, as discussed in Section 7.2, we still

pad OEE operators’ execution time to a conservative upper

bound to account for timing variation that might occur in

18

Table 5. L1 hit and miss latencies for merge-sort, as re-
ported by Intel’s specifications (lL1, lL3), and as measured on

different datasets (l∗L1, l
∗
L3). The last columns show the values

we used in our model. All values are in cycles.

Data lL1 lL3 l∗L1 l∗L3
ˆlL1 ˆlL3

Random

4 34

0.68 3.34

0.74 5.0Ordered 0.6693 3.8032

Reverse 0.6664 4.263

modern CPUs (e.g., due to pipeline bubbles).
5
To determine

this upper bound, we could take the lower bound on L1 hits

determined above and assume that all othermemory accesses

were served from the L3 cache (LLC). We could then compute

the bound by plugging in the L1 and L3 access latencies from

processor manual [40]. As Figure 7 shows, however, due to

the superscalar execution in modern CPUs, the resulting

bound is still 10x larger than the actual execution time.

Instead, we achieve a tighter but still conservative bound

using worst-case execution time (WCET) estimation tech-

niques [33]. We performed 32 experiments each on random,

sorted, and reverse sorted inputs in which we measured the

L1 hit and miss rates using the CPU’s performance coun-

ters. We then used linear regression to learn effective L1

and L3 hit latencies l∗L1 and l
∗
L3 for the specific CPU model.

Since we could not be sure that we have observed the worst

case in our experiments, we increased the L1 and L3 latency

estimates by 10% and 20%, respectively to obtain bounds

ˆlL1 and ˆlL3. Table 5 shows l
∗
L1, l

∗
L3,

ˆlL1, and ˆlL3 estimated for

merge-sort, as well as the latencies from the specification.

The computed upper bounds were 1.6x the actual execution

time for merge-sort and 1.96x for linear-merge and were

never exceeded in our experiments.

The effective L1 and L3 hit latencies would have to be

derived on each distinct CPU model. To do so, we envision a

profiling stage that would replicate the procedure above and

would be performed before Hermetic is deployed to a new

processor.

B.4 Overhead of time padding
We examine the overheads of padding time for mergesort
and linear-merge in the OEE, and how they depend on the

size of the un-observable memory.

Analogous to Section 8.2, we generated random data and

created relations with enough rows to fill up a cache of 1MB

to 27MB. On this data, we measured the time required to

perform the actual computation of the two primitives, and

the time spent busy-waiting to pad the execution time. We

collected results across 10 runs and report the average in

Figure 9. The overhead of time padding ranges between

5
We determine execution time using the rdtsc instruction. rdtsc is avail-

able to enclaves in SGX version 2 [37]. Moreover, a malicious platform

cannot tamper with the timestamp register because the core is “locked

down.”

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25

T
im

e
 (

s
e
c
)

Private Memory Size (MB)

MS
MS-PD

LM
LM-PD

BS

Figure 9. Latency of merge-sort (MS), linear-merge (LM)
with increasing un-observable memory size, compared to

the batcher-sort (BS). -PD indicates time padding.

34.2% and 61.3% for merge-sort, and between 95.0% and

97.9% for linear-merge. Even though the padding over-

head of merge-sort is moderate, it is still about an order

of magnitude faster than batcher-sort. This performance

improvement over batcher-sort is enabled by having an

OEE, and it is the main reason why Hermetic is more effi-

cient than DOA-NoOEE , even though Hermetic provides

stronger guarantees.

C Oblivious primitives which use dummy
tuples

Section 5 mentions that we modified the oblivious primi-

tives from prior work [6] to accept dummy tuples. These

modifications have two goals: (1) allowing the primitives to

compute the correct result on relations that have dummy

tuples, and (2) providing an oblivious method of adding a

controlled number of dummy tuples to the output of certain

primitives.

C.1 Supporting dummy tuples
Dummy tuples in Hermetic are denoted by their value in

the isDummy field. Below we list all the primitives we had to

modify to account for this extra field.

groupid: This primitive groups the rows of a relation based

on a set of attributes, and adds an incremental id column,

whose ids get restarted for each new group. In order for

this to work correctly in the face of dummy tuples, we need

to make sure that dummy records do not get grouped with

real tuples. To avoid this, we expand the set of grouping

attributes by adding the isDummy attribute. The result is that
real tuples get correct incremental and consecutive ids.

grsum: Grouping running sum is a generalization of groupid,
and as such, we were able to make it work with dummy tu-

ples by applying the same technique as above.

union: Union expands the attributes of each relation with

the attributes of the other relation, minus the common at-

tributes, fills them up with nil values, and then appends the

rows of the second relation to the first. To make union work
with dummy tuples, we make sure the isDummy attribute

is considered common across all relations. This means that

the output of unions has a single isDummy attribute, and its

semantics are preserved.

19

filter: To make filter work with dummy tuples, we need

to make sure that user predicates select only real rows. To

achieve this, we rewrite a user-supplied predicatep as “(isDummy
= 0) AND p”. This is enough to guarantee that no dummy

tuples are selected.

join: What we want for join is that real tuples from the

one relation are joined only with real tuples from the other

relation. To achieve this, we include the isDummy attribute
to the set of join attributes of the join operation.

groupby: For the groupby primitive, we apply the same

technique as for the groupid and grsum – we expand the

grouping attributes with isDummy.
cartesian-product: Cartesian product pairs every tuple of
one relation with every tuple of the other, and this happens

even for dummy tuples. However, we need to make sure that

only one instance of isDummy will be in the output relation,

and that it will retain its semantics. To do this, we keep the

isDummy attribute of only one of the relations, and we update
its value to be 1 if both paired tuples are real and 0 otherwise.

multiplicity and histogram: These two primitives need

to return the corresponding statistics of the real tuples. There-

fore, we make sure to (obliviously) exclude dummy tuples

for the computation of multiplicities and histograms.

C.2 Adding dummy tuples to the primitive outputs
To enable the introduction of dummy tuples, we alter the

primitives filter, groupby, and join. The oblivious filter
primitive from previous work involves extending the relation

with a column holding the outcome of the selection predi-

cate, obliviously sorting the relation based on that column,

and finally discarding any tuples which do not satisfy the

predicate. To obliviously add N tuples, we keep N of the

previously discarded tuples, making sure to mark them as

dummy.

groupby queries involve several stages, but their last step

is selection. Therefore, dummy tuples can be added in the

same way.

join queries involve computing the join-degree of each

tuples in the two relations.
6
To add noise, we modify the

value of join-degree: instead of the correct value, we set the

join-degree of all dummy tuples to zero, except one, whose

degree is set to N . As a result, all previous dummy tuples are

eliminated and N new ones are created.

D Hermetic multi-objective query
optimization

Hermetic’s query planner uses multi-objective optimiza-

tion [86] to find the optimal query plan that matches the

user’s priorities. A query plan is associated with multiple

costs, including the overall performance cost and a vector

6
In a join between relations R and S , the join-degree of a tuple in R corre-

sponds to the number of tuples in S whose join attribute value is the same

with this row in R.

of privacy costs across the involved relations. The user’s

specification includes a vector of bounds, B, and a vector of

weights,W, for the privacy costs on all the input relations.

The planner’s output is the plan where the weighted sum of

all the costs is as close to optimal as possible and where all

of the privacy costs are within the bounds. Each plan that

the planner considers could be represented as a join tree

covering all the input relations, with each noised operator

assigned a privacy parameter, εi . (The current query planner

only considers different join orders and privacy parameters.

We leave more advanced query optimization to future work.)

The planner first constructs the complete set of alternative

plans joining the given set of relations. Then, for each of

the candidate plans, the planner formalizes an optimization

problem on the privacy parameters of all the noised opera-

tors, and solves it using linear programming. Finally, the plan

that both meets the bounds and has the best weighted-sum

of costs is selected.

Returning to the query example in Figure 2, let p be the

plan under consideration, ε[i] be the privacy parameter on

the i-th operator of the plan, and fp (ε) be the plan’s over-
all performance cost. Then, we could solve the following

optimization problem for the privacy parameters:

minW · A · ε + fp (ε)

s .t . A · ε ≤ B, 0 < ε ≤ B.
(3)

Here, the matrixA is the linear mapping from privacy param-

eters to the privacy costs on the input relations. For instance,

suppose theC ,T and P relations are indexed as 0, 1 and 2, and

the privacy parameters on the selection on C , the selection
on P , the join of C and T and the join of (C ▷◁ T) and P are

indexed as 0, 1, 2 and 3 respectively. Then, the corresponding

A for the plan is:



1 0 1 1

0 0 1 1

0 1 0 1


(4)

Finding an exact solution to this optimization problem is

challenging because we cannot assume that the performance

cost function fp (ε) is either linear or convex. As a result,

Hermetic approximates the solution instead. The planner

first partitions the entire parameter space into small poly-

topes, and then approximates the performance cost function

on each polytope as the linear interpolation of the vertices

of the polytope. Thus, it achieves a piecewise linear approxi-

mation of the performance cost function. Finally, the planner

can solve the corresponding piecewise linear programming

problem to obtain an approximately-optimal assignment for

the privacy parameters. This approach is consistent with ex-

isting nonlinear multidimensional optimization techniques

in the optimization literature [60].

Let fp (ε) be the performance cost function, d be the num-

ber of operators in the query plan, and K be the number of

partitions on each parameter dimension. Then, the entire pa-

rameter space could be partitioned into Kd
polytopes, each

20

of which has 2
d
vertices. We pick one of the vertices, ε0, and

d other vertices, ε1, . . . , εd , each of which is different from

ε0 in exactly one parameter dimension. Then any point, ε , as
well as its performance cost, fp (ε), in such polytope could

be represented as:

(ε, fp (ε)) =
d∑
i=1

ui ∗ ((εi , fp (εi)) − (ε0, fp (ε0)))

+ (ε0, fp (ε0))

, where 0 ≤ ui ≤ 1,

0 ≤ ui + uj ≤ 2,

0 ≤ ui + uj + uk ≤ 3,

. . .

0 ≤

d∑
i=1

ui ≤ d .

(5)

For each such polytope, we can plug Equations 5 into Equa-

tion 3 to obtain the following linear programming problem:

min W · A · ε+
d∑
i=1

ui ∗ (fp (εi) − fp (ε0)) + fp (ε0)

s .t . A · ε ≤ B,
0 < ε ≤ B,

ε −
d∑
i=1

ui ∗ (εi − ε0) = ε0,

0 ≤ ui ≤ 1,

0 ≤ ui + uj ≤ 2,

0 ≤ ui + uj + uk ≤ 3,

. . .

0 ≤

d∑
i=1

ui ≤ d .

(6)

Solving this linear programming problem on all the poly-

topes enables the query planner to determine the optimal

assignment of privacy parameters for the plan.

The number of partitions of the parameter space, K , af-
fects the optimization latency and accuracy. LargerK leads to

more fine-grained linear approximation of the non-linear ob-

jective, but requires more linear programmings to be solved.

To amortize the optimization overheads for largeK , the query
planner could be extended with parametric optimization [42]

to pre-compute the optimal plans for all possibleW and B
so that only one lookup overhead is necessary to derive the

optimal plan at runtime.

21

	Abstract
	1 Introduction
	2 Overview
	2.1 Background: Differential privacy
	2.2 Straw-man solution with TEEs
	2.3 Problem: Side channels
	2.4 State of the art
	2.5 Approach

	3 The Hermetic System
	3.1 Overview
	3.2 Initialization
	3.3 Attestation
	3.4 Query submission and verification
	3.5 Query execution

	4 Oblivious Execution Environments
	4.1 OEE properties
	4.2 Challenges in building an OEE today
	4.3 The Hermetic OEE

	5 Oblivious operators
	5.1 Extending oblivious operators
	5.2 Differentially-private padding

	6 Privacy-aware Query Planning
	7 Implementation
	7.1 Hermetic hypervisor
	7.2 Oblivious execution environments
	7.3 Trusted computing base

	8 Evaluation
	8.1 Experimental setup
	8.2 OEE security properties
	8.3 Performance of relational operators
	8.4 End-to-end performance
	8.5 Comparison with the state-of-the-art
	8.6 Trading-off privacy and performance

	9 Related Work
	10 Conclusion
	References
	A Query operators
	A.1 List of query operators

	B Predictable timing for OEE operators
	B.1 Avoiding data-dependent control flow and instructions
	B.2 Making L1 cache misses predictable
	B.3 Determining a conservative upper bound on execution time
	B.4 Overhead of time padding

	C Oblivious primitives which use dummy tuples
	C.1 Supporting dummy tuples
	C.2 Adding dummy tuples to the primitive outputs

	D Hermetic multi-objective query optimization

