
User Level Management of L4 Kernel Memory

Andreas Haeberlen
University of Karlsruhe
haeberlen@ira.uka.de

Abstract

In the Hazelnut microkernel, kernel memory is a limited re-
source. This allows malicious applications to run denial-of-
service attacks against the kernel, because there is no way to
restrict the amount of kernel memory they may use. I suggest to
integrate kernel memory into the normal memory management
concept, which permits to control its allocation entirely from
user level.

1 Introduction

In an L4 system, the microkernel is responsible for maintain-
ing TCBs and page tables; additionally, it keeps a mapping
database to permit asynchronous revocation of mappings. In
Hazelnut, the memory for these structures comes from a cen-
tral page pool and is allocated on demand. If a malicious ap-
plication executes certain sequences of kernel operations(e.g.
a Ping-Pong map attack), it can exhaust this pool, forcing the
kernel to deny service to other applications.

A solution has already been proposed by Liedtke et al. [1],
which allows applications to remedy this situation by donat-
ing some of their own memory to the kernel. This is done by
granting the memory to a pager; the request then travels along
the pager hierarchy until it arrives atσ0, which grants it to the
kernel. This approach has some important disadvantages:

• Kernel operations may fail due to lack of memory. This
forces applications to add recovery code around most ker-
nel invocations.

• The donation process is inverse to the normal pager hier-
archy

• Logically, it is not thekernel who needs the memory, but
rather theapplication (to store its mappings in)

For these reasons, I think that kernel memory should be con-
trolled transparently by pagers, just like ordinary memory.

2 Suggestion: K-pages

Every page has access bits to control read and write permission.
I introduce a new bit, theK-bit, to indicate whether the page
can be used by the kernel. Onlyσ0 is allowed to modify this
bit. When active, it overrides the read and write bits, and the
page is inaccessible from user level. A page with the K-bit set
is called aK-page.

When a kernel operation (e.g. a map IPC) needs more mem-
ory, the kernel generates aK-pagefault on behalf of the appli-
cation. This is sent to the pager exactly like a normal pagefault,
but accepts only mappings of K-pages.

K-pages may be unmapped just like ordinary pages; the ef-
fect depends on its contents. If a page table, page directoryor
mapping database entry is hit, the memory area it covered will
be flushed. If TCBs are hit, the threads disappear. In either
case, the contents of the K-page are invalidated.

3 Security Considerations

Of course, care must be taken not to change existing L4 seman-
tics or to create security risks. Some of the issues are:

• Internal design decisions of the kernel must not be ex-
posed. This can be done by virtualizing K-pagefaults so
that they seem to come from fixed locations inside the ker-
nel area.

• The implementation must be deadlock free. When a K-
pagefault is raised by a response to a normal pagefault,
the faulting map operation must be aborted or its results
discarded.

• Pagers should not gain more power over applications than
they had before. This is not critical since they can map
the initial code and thereby control the application’s be-
haviour.

• It must not be possible to compromise the kernel’s secu-
rity, e.g. by mapping page tables to a page directory or
vice versa. This can be achieved by marking the pages
internally.

4 Conclusion

If user-level pagers are allowed to control the allocation of ker-
nel memory, related denial-of-service attacks can be effectively
prevented. This requires small changes to the kernel interface,
but otherwise fits well into the pager concept and can be com-
pletely transparent to applications.

References

[1] J. Liedtke, N. Islam, and T. Jaeger. Preventing Denial-of-Service Attacks
on aµ-Kernel for WebOSes. InProceedings of the 6th Workshop on Hot
Topics in Operating Systems (HotOS), May 1997.


