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ABSTRACT
We present a vision for the future of an emerging category
of cloud service: the metaverse of 3D virtual worlds. Today,
hundreds of millions of users are active daily in such worlds,
but they are partitioned into small groups of at most a few
hundred players. Each group joins a different virtual world
instance, and players can only interact in 3Dwith others play-
ers in the same group during that session. Current platforms
are designed in ways that simply cannot scale much further,
and solutions from other cloud services do not generalize
to the more interactive, bidirectional, and latency-sensitive
interactive 3D domain. We outline some of the technical chal-
lenges that currently stand in the way of a metaverse without
inherent technical limitations on the number of users in a
shared experience. We argue that, although these obviously
touch on many other areas of Computer Science such as com-
puter graphics and numerical simulation, the core challenges
lie squarely within the systems domain.

CCS CONCEPTS
• Networks → Cloud computing.

1 INTRODUCTION
Currently, there is a lot of excitement about the vision of
the metaverse as originally described by Stephenson [67] –
a giant, immersive 3D virtual world with users interacting
with each other through avatars, multiple linked virtual user-
generated environments, and a digital economy making the
entire system viable. There are many organizations building
technology that aspires to this vision, and a major social
network operator has even gone as far as renaming the entire
company to reflect its commitment to it.
Making the metaverse a reality will require major ad-

vances in 3D computer graphics, virtual and augmented
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reality, physical simulation, and artificial intelligence. The
corresponding research efforts are well underway and are re-
ceiving a lot of public attention. But, perhaps less obviously,
the metaverse is also a prime candidate for a next-generation
cloud service. We claim that the primary challenges to build-
ing the metaverse are in fact systems challenges in satisfying
technical requirements common to 3D social interaction:
low-latency communication, computation on heterogeneous
client devices, synchronized distributed state, and partition-
ing and balancing the workload of that distributed system.
For example, we observe that current platforms in this

space, such as Roblox, Fortnite (UEFN), Minecraft, and Sec-
ond Life all demonstrate 1) a variety of different, linked
experiences, which in current practice range from theme
parks to concerts to massive battles, and 2) player creation
of this content, independent of the vendor who provided
the platform. Because of this, a separation emerges between
metaverse-like platforms that provide the infrastructure for
virtual worlds, and content creators that build and operate
specific experiences on these platforms. Those content cre-
ators vary from individual amateurs to 200-person compa-
nies. This is roughly analogous to the platform-as-a-service
model that is common on cloud platforms today, so rather
than being a primarily game-like or VR-like technology stack,
we see the metaverse as foremost a real-time, multiuser ana-
log of Amazon Web Services (AWS) where each experience
executes within a container-like isolation structure on ab-
stracted data center resources. That they are 3D and maybe
VR on the client is secondary to the real-time, multiuser, and
multiple-application platform service aspects.
Because of these systems challenges, today’s platforms

fall short of the full metaverse vision because they do not
scale! This may sound surprising, given that these platforms
have tens of millions of active users each day. But in fact,
the current platforms separate those players into millions of
separate world instances (called “servers” in their user inter-
faces) that each contain a small number of users. Each user
can only interact with the users on the same instance. The
exact limit of players per instance varies between platforms:
Minecraft becomes unusable after 400 users [73], Roblox is
currently API-limited to 700 users [12], Second Life and Fort-
nite are limited to 100, and Horizon Worlds to 20 [6]. Some
platforms support inter-instance mobility – perhaps by al-
lowing players to “teleport” between instances – but it is
always explicit and player-visible. Except for some carefully
engineered one-off experiences that did not have general
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Workspace.Switch.Touched:Connect(function(x)
local cannon = Workspace.Cannon
local player = x.Parent:FindFirstChild("Humanoid")
local fired = cannon:FindFirstChild("Ball")
if player and not fired then
local ball = Instance.new("Part")
ball.Name = "Ball"
ball.Shape = Enum.PartType.Ball
ball.Position=cannon.Position+Vector3.new(0,6,0)
ball.Parent = cannon
ball:ApplyImpulse(Vector3.new(200,700,200))

end
end)

Figure 1: An scene from a Roblox experience (a), a sketch of the current architecture (b), and a simple script (c).

purpose interaction [70], we are not aware of any current
platform that can support a real-time social 3D experience
withmore than 1,000mutually visible and interacting users; a
tiny fraction of the tens of millions online on these platforms
today, and the billions of potential users.
The reason for this lack of real scalability is a combina-

tion of hard technical problems that have yet to be solved
convincingly. In this paper, we sketch these problems, along
with some potential solutions, and we outline a vision of
a cloud-like metaverse platform that could truly achieve
Stephenson’s vision of a single shared world with tens of
thousands (or perhaps even millions!) of users. We use the
Roblox platform as a case study, and we argue that its under-
lying computation is quite different from pretty much every
other current cloud service we are aware of: it comes with
strict latency requirements, an unusual type of consistency,
an extreme level of dynamism, new kinds of security risks,
and many other interesting challenges.

This paper is a call to arms: although virtual worlds have
not yet received a lot of attention from the systems commu-
nity, we believe that there are many exciting problems to be
solved, and that our community has a critical role to play!

2 OVERVIEW
Roblox is a popular online platform with about 66 million
daily active users [61]. It is not a specific game by itself;
rather, it is a platform that hosts a large number of 3D virtual
worlds called experiences. Those can be created and published
by anyone, using a freely available editor, Roblox Studio. We
show a screenshot from an example experience in Figure 1(a).

Roblox users can assume one of two distinct roles: they can
act as creators and make their own experiences, or they can
act as players and join experiences that others have created.
The platform itself is free to use; Roblox supports it by selling
an virtual currency called Robux. Creators can also use their
experiences to earn money in various ways, e.g., by offering
virtual items for sale [60].

In Figure 1(b), we illustrate the architecture of the current
Roblox platform [44, 53]. Roblox consists of two main func-
tional components: a simulation that maintains and evolves
the state of the virtual world, and a renderer that displays a

(typically different) view of the state to each player. The sim-
ulation consists of the game logic, which describes how the
world works, and a physics module that evolves object state
based on the laws of physics. The game logic is expressed as
scripts in a language called Luau [59]. The renderer contains
a 3D audio component that produces an audio stream for
each player, e.g., by mixing sound effects and voices of other
nearby players, as well as the video computation, which
roughly consists of shadows, lighting, and frame assembly.
The Roblox engine maintains two kinds of data: the data

model, which is a dynamic, DOM-like tree that consists of
object states and object positions, and assets, which are static
descriptions of the objects themselves, such as 3D meshes,
sounds, and Luau scripts. Since the assets are currently im-
mutable (or at most change once in a few days), clients simply
download them from a CDN on demand.

Figure 1(c) shows an example script that causes a cannon
to emit a cannonball when the player touches a switch. The
cannon and the switch are accessible via named vertexes in
the data model, and they have properties (such as Position)
and events (such as Touched). New data-model vertexes can
be created at runtime, like our example script does to make
the cannonball appear, and these changes have an immediate
effect on the simulation. Once created, the cannonball is
moved on a ballistic trajectory by the physics module.
A traditional game engine would run the simulation on

the server and simply stream updates to client-side render-
ers. These renderers might do a bit of simulation on their
own, e.g., by extrapolating object positions via dead reck-
oning to hide network latencies, but only the server’s state
is authoritative: if the client’s extrapolation is wrong, it is
overridden by the server’s state. This approach can scale to
tens of players, which is why most online platforms games
are capped at 100 or fewer players per instance. In contrast,
Roblox distributes game logic and physics across the server
and the clients: a player’s client can take over the author-
itative simulation of objects that are close to that player.
This reduces the load on the server and enables the client
to tolerate even seconds of network latencies without user-
perceived lag. With this approach, Roblox can scale each
instance of an experience to about 700 players [12].
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3 TECHNICAL CHALLENGES
Why can’t a Roblox-like platform scale to experiences with
more users? In this section, we discuss some of the technical
challenges that currently prevent this.

3.1 Workload scalability
At first glance, simulating virtual worlds is an 𝑂 (𝑁 2) task,
since each of the 𝑁 users can potentially interact with every
other user, both directly through voice and virtual physics,
and indirectly through effects caused by their actions. This
would make virtual worlds inherently unscalable.

One way to prevent this computational explosion is to
ensure that each object can interact with at most a limited
number of other objects – ideally 𝑂 (1). Fortunately, virtual-
world workloads have a property that naturally creates such
a limit in most cases: they are spatial, in the sense that each
object has a specific location in 2D/3D space, and they ex-
hibit spatial locality: objects tend to interact mostly with
objects that are close to them. This is certainly true of the
physics simulation: current physics engines focus on me-
chanical properties, such as torque, momentum, velocity,
etc., that change only when objects come in direct contact.
Thus, the physics workload, which is a major part of the
overall computation, is already 𝑂 (𝑁 ).

Spatial locality is less obvious for scripts. With the current
Roblox API, any script can access any object (by traversing
the data model), and there are several non-local operations:
for instance, a DescendantAdded event handler near the
root of the data model would fire whenever an object is
created anywhere in the virtual world, and scripts can invoke
raycasts to find the closest object in a given direction, no
matter how far away it is. Fortunately, there is a lot of locality
in what scripts actually do: many scripts are attached to a
specific object and interact only with that object (say, making
a car turn when a player turns the steering wheel), or they
are equivalent to such scripts: a script that implements the
steering wheels of all the cars in the simulation is morally
equivalent to just attaching the same script to each car.

Locality could be increased by removing unscalable prim-
itives (such as the event handler in our example) and/or
replacing them with scalable alternatives (such as a range-
limited raycast). Perhaps each script could even be restricted
to a specific object, or be given a “bounding box” that limits
its data-model access to objects within this box. Functionality
that is truly global, such as a Harry-Potter-style “Marauder’s
Map” that displays the current locations of other players
anywhere in the virtual world, could be implemented with
multiple scripts and explicit message passing.
Key challenges: The biggest challenge here is to achieve
scalability without losing usability in the process. Defining
a scripting language with perfect locality is not hard; defin-
ing one that is also intuitive, easy to learn, and can support

a variety of complex experiences is much harder. (This is
particularly true for a platform like Roblox, where many
creators write their very first programs.) However, the com-
munity is no stranger to this kind of challenge; recall, e.g., the
debate about the right language for data analytics [17, 18],
distributed systems [36, 43], or privacy [7, 22, 46].

3.2 Concurrency
A scalable workload does not guarantee scalability by itself:
since the work for a given frame must be completed before
the start of the next frame (within 16ms, at 60fps), the only
hope is to do as much of the work as possible in parallel.
This is reasonably easy for physics, but not for scripts.

Achieving high concurrency basically requires two things:
(1) as few dependencies between tasks as possible, and (2) a
way for the platform to recognize the absence of such depen-
dencies. In principle, metaverse workloads should have few
dependencies: if one script operates a door and another the
engine of a car, the two should rarely, if ever, need to interact.
However, dependencies are sometimes created artificially by
the API – e.g., by a promise that scripts will execute one at a
time, or that events will be delivered in a certain order. This
is convenient and easy to implement a single server, but it
comes at a high price in a distributed environment. Depen-
dencies can also arise from the way certain operations are
defined: for instance, if objects are moved by setting veloci-
ties, any attempt by two scripts to move the same object will
create a write-write conflict, whereas, if objects are moved
by applying impulses, the impulses can simply be added up.
Even when there morally are no dependencies, the plat-

form cannot necessarily be sure of this. For instance, two
scripts that traverse the data model could potentially interact,
and it is not always easy to prove the contrary, e.g., via static
analysis. However, explicitly parallel primitives could help
with this – perhaps a forEach loop that applies a certain op-
eration to each element of a set, or each data-model vertex of
a particular type. Such operations could easily be vectorized
and/or run in parallel on different servers.
Key challenges: Increasing concurrency raises the spectre
of race conditions and deadlocks, but careful API design [4,
15] could help with this – and perhaps also in the special
nature of this workload. Maybe in this domain it makes more
sense to lock space instead of state?

3.3 Distributed execution
With tens of thousands of players, even an 𝑂 (𝑁 ) workload
would quickly exceed the capacity of a single server and
would thus have to be divided up among multiple machines.
This raises two questions: (1) should these machines be in-
frastructure servers or player devices?, and (2) how exactly
should the workload be divided up?
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The answer to the first question is most likely “both”. At
the very least, the player devices would have to simulate the
objects closest to their player’s avatar – without this, it could
take an entire WAN RTT, e.g., from the time a player kicks a
ball until the ball responds. But true scalability would require
more than that: the player devices would have to help with
the heavy workload, otherwise the system would remain
bottlenecked by the infrastructure servers. This is already
standard in many multiplayer games [80], and it provides
organic scalability [9, 63]: adding more players increases the
workload but also adds resources with which to do the work.

However, some parts of the simulation would have to
remain on the infrastructure, for several reasons. One is
cheating [33]: if user devices are authoritative for part of the
simulation and nobody checks their results, a user with a
hacked device could open a locked door simply by setting
the lock’s state to ’open’. Others include safety (what if a
hacked device is used to arrange objects in an obscene pat-
tern?), user experience (overloading a mobile device with
computations could drain its battery), and reliability: some
players could have limited connectivity or suddenly switch
off their devices, and this should not affect other players.
Overall, for both technical and economic reasons, we ex-

pect that the simulation would have to be distributed across
a large number of infrastructure servers and player devices.
This is a major difference to most existing cloud services,
which run exclusively on infrastructure servers.
Key challenges: Coordinating a massive number of globally
distributed devices is an obvious challenge, as are security
and reliability. The extensive literature on peer-to-peer sys-
tems [37, 63] and especially peer-assisted systems [54, 83]
could help. However, the existing solutions typically cannot
support the stringent timing requirements of virtual worlds,
so this is by no means a solved problem.

3.4 Partitioning
The next question is how the simulation should be divided up
among these nodes. As with any other distributed system, the
network will limit how much, and how quickly, the nodes
can communicate, so it makes sense to keep most of the
computation local. For instance, if a car consists of several
connected parts (wheels, suspension, seats, etc.), the physics
module needs to solve a complex system of equations to
compute the state of these parts for each new frame [45, §15].
If the parts are stored on different machines, this requires an
enormous amount of communication.

At first glance, one could simply divide up the simulation
into groups of dependent objects – “physics islands” of con-
nected parts, objects that are accessed by the same script, etc.
– and assign each group to a specific node. But players and
objects can move over time, so it is not that simple: a player
might jump onto a moving train car and thus become part of

the train car’s physics island, and some computations, such
as collision detection, have to reach across islands.

Additionally, the scale and distribution of objects and their
interactions will vary across different experiences by dif-
ferent creators. Any static, uniform partitioning that uses
virtual 3D position (such as a grid) as a heuristic of data
dependency will have overloaded and underloaded elements,
and any dynamic partitioning using off-the-shelf 3D data
structures, such as BSP trees or Voronoi partitions, requires
continuous updates that must themselves be synchronized.
Simulation also is not necessarily solely collision response
between objects. It encompasses fluid dynamics such as wa-
ter and air, electronic and hydraulic simulation, realistic (e.g.,
gravity, magnetism) and fantastic (tractor beam, laser rifle,
telekinesis) forces that operate over distances, and arbitrary
programmable callbacks injected by the experience creator.
In some sense, the computation that advances the world

state (through realistic physics or otherwise) is a data-flow
graph that connects nodes representing elements of that
state. A good partitioning of this graph is a form of min-cut
that minimizes communication between the separated graph
components, so that they can be assigned to different nodes.
The components themselves can have dense computational
dependencies. This is a generalization of the traditional con-
cept of physics islands: instead of virtual 3D locality as a
heuristic, the actual data flow dictates the partitioning.
Key challenges: Spreading a large workload with lots of
dependencies across nodes is known to be a hard problem,
as, e.g., the literature on graph processing [24, 82] can attest,
but the spatial structure of metaverse workloads should help.

3.5 Load balancing
If the virtual world were static, the partitions could simply be
assigned to nodes at the beginning and remain constant after
that. However, in practice, players and objects will move
around and can congregate in specific regions, e.g., for a
large battle; also, players can join or leave, and objects can
be created or destroyed. Thus, the load can grow or shrink,
and it can become imbalanced across nodes. This suggests
mechanism for shifting load from one node to another.

One approach would be to provide a mechanism for split-
ting andmerging regions at runtime. For instance, if a concert
venue fills up with guests, a piece of its partition could be
split off and assigned to an additional node. However, as
players and objects move around, frequent splitting could
lead to complicated bookkeeping and a substantial amount
fragmentation. It seems more promising to divide the world
into fixed-size regions of virtual space – say, cube “tiles” of
perhaps 100m to a side – and to assign sets of tiles to specific
nodes [13]. This is roughly analogous to how operating sys-
tems manage virtual memory at the granularity of fixed-size
pages and use a page table to control the location of each.
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Notice that we have been carefully referring to “nodes”
and not to servers in a data center: Roblox today distributes
computation primarily to client nodes, albeit with a 3D spa-
tial heuristic instead of a more sophisticated partitioning
system like this. Also, the subdivision would not have to be
exact: for the reasons discussed in Section 3.4, a train car that
moves from a tile on server A to an adjacent tile on server B
should be moved as a whole, and could thus be temporarily
“sticking out of” the first tile. This is fine: the tiles would
be used mostly for load management and their boundaries
would not constrain directly physics and scripting.
Key challenges: Due to the stringent timing requirements
of virtual worlds, “downtime” must be avoided during tile
migrations. This problem has been solved, e.g., for live mi-
gration of virtual machines [14], and similar solutions could
work here. The answer to the question which tile to move
when is less clear; morally, this is a scheduling problem, but
it is unlike any other we have seen in the literature.

3.6 Synchrony
In a metaverse, the players would naturally expect the simu-
lation to be synchronous: if one player does something, other
nearby players should see the effects immediately. However,
in practice this is difficult to achieve because two players
could be close in the virtual world but very far apart in the
real world. Thus, the real-world laws of physics will limit
how quickly information from one player’s device can reach
the other player’s device.
For instance, consider the following scenario: Alice is in

New York, Bob in Tokyo, and they are both connected to a
game server in London. The one-way propagation delays are
roughly 40ms from Alice to the server, and roughly 110ms
from the server to Bob. In the virtual world, Alice is standing
on a platform while a train with Bob on board is passing
through at 22mph (10𝑚

𝑠
). Alice is holding a ball, Bob briefly

opens his window, and Alice throws the ball to Bob.
In a naïve implementation, the simulation runs on the

server, and the server regularly sends updates to Alice’s and
Bob’s machines. In this case, Alice will see the train with a
40ms delay, so, if she aims at the window where she sees
it, the window will already have moved 40cm. Moreover,
Alice’s command to throw the ball will not reach the server
until 40ms later, at which point the window will have moved
another 40cm. Thus, Alice will most likely miss the window.
With client-side execution (Section 3.3), the situation is even
worse: the train car may be simulated on Bob’s machine at
the time, which would increase the RTT to 300ms.

A more attractive solution would be to run the simulation
on a shared virtual timeline, so that Alice, Bob, and the server
all see the train in the exact same location, and Alice’s throw
will hit the window. However, this works only if all the one-
way delays are smaller than the inter-frame delay (33ms at

30fps). If some one-way delays are larger, as in our scenario,
there is simply no way that an event on one machine could
reach all the other machines in time for the next frame.
A common solution to the above problem is a predictive

contract mechanism, such as “dead reckoning” [52]: Alice’s
machine can extrapolate the train’s likely current position,
and correct it once the next update arrives. However, simple
extrapolation works only for position data, and even there it
can produce serious artifacts: if the train travels on a narrow
curve, linear dead reckoning will cause an ugly sawtooth
pattern of short linear segments followed by corrections.
Key challenges: The key problem – presenting a consistent
view to different players – has been studied extensively in the
context of multiplayer games [42], but the solutions often
rely on domain knowledge: for instance, to avoid player
frustration, a first-person shooter game might “favor the
shooter” and count a hit based on what the shooter saw, even
if the server’s view was different. A metaverse that is built on
user-generated content would need a more general solution
that works across many different kinds of experiences.

3.7 Speculation
The biggest problem with dead reckoning is its fairly sim-
plistic predictions: unless objects happen to actually travel
on a linear trajectory, frequent corrections are inevitable.
Moreover, the only way to prevent large (and noticeable) cor-
rections is for the server to send updates frequently, which
consumes a lot of bandwidth.
One way to avoid this would be to leverage the entire

game logic, instead of “just” the physics: nodes could be given
replicas of entire tiles (scripts and all) and use speculation –
a time-tested latency-hiding technique [8, 16, 49] – to roll
forward the state of their replicas to the current virtual time,
using the normal rules (physics, scripts, etc.) that apply to
the entire simulation. In our above example, this would cause
the train and the ball to move on their normal trajectories.
Importantly, it would also work in more complex cases – say,
if a script causes the ball to pop once it hits a sharp object.

Of course, nondeterministic events, such as player actions,
can cause speculation to fail. For instance, while Alice is
holding the ball in her hand, Bob’s machine will predict that
the ball remains where it is. Thus, when Bob’s machine learns
that Alice has thrown the ball, it needs to make a correction
– but after that, the ball once again has the correct state and
can be simulated locally, without further updates from Alice.
Absent such nondeterministic events, replica tiles will evolve
almost exactly as the original [20, 39], although occasional
updates are still useful, e.g., because of FPU differences.
Key challenges: One obvious challenge is to guess correctly
much of the time. Of course, this also applies to other forms
of speculation, such as prefetching [3, 38] or speculative exe-
cution [35, 49], but good speculation often involves domain
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knowledge, which may be hard to gather in a metaverse that
consists of many different, user-generated experiences. An-
other, deeper challenge is to speculate efficiently across sub-
systems. Although some speculation is already done by mod-
ern game engines [21, 56], it is typically limited to physics
state and does not involve complex, user-generated scripts.

3.8 Reconciliation
In general, it is not sufficient to correct just the single object
that was affected by the nondeterministic event. For instance,
suppose a pebble flies towards Alice when she is about to
throw the ball. Bob’s machine may speculate that no addi-
tional events will happen and keep the ball where it is, so the
pebble may bounce off it. Once Bob’s machine learns of the
throw, it will have to “roll back time” analogous to [48], put
the pebble back where it was, and redo the physics compu-
tation. This time, the pebble will continue on its trajectory,
since there is no longer a ball it can bounce off of.
Speculation generally works well if 1) its guesses are

mostly correct, and 2) being wrong is reasonably cheap. We
hypothesize that 1) is true because speculation errors are
driven by nondeterministic events, specifically user actions,
which happen at human timescales: most users cannot push
keys more than maybe twice per second, and often don’t
push any at all. 2) should be true because many events will
affect only one physics islands’ worth of computation (say,
the position of the ball); few events would truly affect an
entire tile. One could use provenance [10] to track dependen-
cies and to decide what, if anything, needs to be recomputed,
roughly analogous to view maintenance in databases [25].
One concern are misprediction cascades: what if the en-

gine of Bob’s train slows down and causes mispredictions
along the entire train? One way to avoid this could be to
use hierarchical simulation, that is, to first simulate a heav-
ily simplified version of the train as a whole, and to then
propagate the solution to a more detailed simulation of the
individual cars. Another, related concern is that updates after
failed speculation could cause visual artifacts. However, at
least for physics state, this problem exists even with simpler
approaches, such as dead reckoning, and there are existing
solutions, such as interpolation techniques that slowly move
objects fromwhere they are to where they are supposed to be,
potentially across several frames. The problem is harder for
discrete state, though, such as events or variables in scripts.
Key challenges: In addition to the challenge of being right
as often as possible (Section 3.7), it is important to minimize
the cost of being wrong. Incremental updates could be the
key to this: one could think of the simulation state as basically
a materialized view over local and remote input events, with
the latter changing over time as the local client becomes
aware of past remote events on other clients. Thus, efficient
view maintenance techniques [26] could be useful.

3.9 Consistency
The above discussion raises a larger question: how close do
the virtual worlds on the different machines need to be?
Keeping them exactly identical is impossible, because of
propagation delays, and even very close consistency could
be expensive. However, exact consistency is also unneces-
sary: the simulation is shown to human players, so small
inconsistencies are okay if most players will not notice them.

And yet, some limit on the inconsistencies is clearly neces-
sary: the train needs to be approximately in the right place,
otherwise Alice might find herself run over if she attempts
to cross the tracks. On the one hand, eventual consistency is
not enough, since this would permit the platform to adjust
the position of the train, say, tomorrow – long after it has
already hit Alice. On the other hand, sequential consistency
is unrealistic, given the WAN delays and the real-time nature
of the workload. Despite quite a bit of existing work [41], we
know of no cut-and-dried consistency model that would fit
this scenario perfectly, and it is not immediately clear (to us)
what one should look like. The answer may depend partly
on the scenario – a concert may need weaker consistency
than a basketball game – and even on the situation: if Al-
ice shoots a paintball at Bob, she needs strong consistency
at that moment to decide whether Bob has been hit, even
though weaker consistency may be fine otherwise.
Key challenges: Due to the heterogeneous workload, pick-
ing a good consistency model for the metaverse is much
harder than for a specific game – there may not even be a
single “right” answer at all! Maintaining it efficiently at scale
is another challenge; there are approaches that can avoid
coordination some of the time [5], which could be useful.

3.10 Efficiency
Running virtual worlds on a shared, cloud-like infrastructure
could enable a number of interesting optimizations. One ex-
ample is vectorization: suppose a creator has made a popular
“house” template that several experiences are using in cities.
In this case, some of the underlying computation is identical
and could potentially be vectorized, somewhat analogous
to Orochi [71], or the parallel simulations in Madrona [64].
Similarly, it may be possible to apply a form of deduplica-
tion [27]: if the same script or object exists in several different
instances, one could save space by storing it only once.

Of course, the state of identical objects may diverge over
time; for instance, a user may choose to paint her walls in a
different color, or someone might smash a window. In a pure
copy-on-write solution, such a divergence would end the
benefit from deduplication. But we hypothesize that there is
a way to create the equivalent of union filesystems, where
a single, immutable filesystem can be customized with a
mutable delta layer and the user-visible state is the union
of the two. In other words, a scalable platform could use
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vectorization and deduplication for the first layer and then
apply small per-instance customizations on top of the result.
Key challenges: A metaverse simulation will likely repre-
sent a giant computational workload, so it is important to
increase efficiency, in order to keep the service affordable.

3.11 Scheduling
Unlike many existing cloud workloads, metaverse compu-
tations are highly time-sensitive, so careful scheduling is
critical. However, they are also highly variable: players and
objects can move around, scripts can run at irregular times,
and the number and type of objects can change dramatically
– for instance, an explosion can turn a large building into
rubble. This creates a challenging scheduling problem.

So far, the scheduling literature does not seem to cover this
scenario very well: existing cluster scheduling techniques,
like RackSched [84] or FIRM [57], can support latency-sensi-
tive services but do not offer real-time guarantees, while
existing real-time scheduling techniques tend to focus on
small-scale and/or embedded systems and do not scale to data
centers. However, there are techniques that could be adapted
or extended: for instance, compositional scheduling [65] can
scale up more traditional real-time scheduling, and multi-
mode techniques [58] can be used to adjust schedules while
preserving the timing guarantees during transitions.

However, a metaverse workload also provides interesting
new opportunities for scheduling. For instance, it is highly
flexible: although a scheduler cannot necessarily change the
deadline for the next frame, it can change the level of detail
for certain objects, run physics with larger time steps, ap-
proximate computations or run them with lower precision,
or even temporarily drop some functions (such as shadows)
entirely. Techniques such asmixed-criticality scheduling [74]
could exploit this by prioritizing critical tasks during over-
load. It is also somewhat predictable at short timescales: if
many players start to congregate in a small area, the sched-
uler can migrate parts of this area to other nodes. Notice
that this workload is more transparent to the infrastructure
than a traditional compute workload: an EC2 server cannot
easily predict when the needs of a VM are about to change,
but in this case, a lot of semantic information (such as player
positions and trajectories) is visible to the platform.
Key challenges: The scheduling requirements of the meta-
verse are quite different from almost everything else we have
seen in the literature: it involves a unique combination of
massive scale, highly variability, stringent timing require-
ments, and flexibility in several dimensions. This is both a
challenge and an interesting opportunity.

3.12 Security
If the simulation runs entirely on infrastructure servers, it is
relatively easy to guarantee, e.g., that players cannot walk

through walls or open doors without a key. But once some
of the computation is moved to clients, there is a risk of
cheating: some users could hack their devices and make
changes to game state that their device controls. Since there
are compelling reasons for this move (see Section 3.3), the
question is how one could guarantee integrity in this case.
One way would be to use traditional anti-cheat software

on the client side [32, 55, 62]. This is generally effective, but a)
it is fairly specific to known forms of cheating, which leads to
a persistent cat-and-mouse game that the platform operators
cannot hope to win, and b) there are sophisticated attacks
that this approach cannot detect. Another, more general
approach would be auditing: the infrastructure has access to
most of the information the client is using, so it can repeat,
say, a small fraction of the computations and compare the
results to the ones the client has sent, analogous to [11, 29].
This could also help, e.g., with hardware malfunctions [31].

The question is which computations the infrastructure
should audit. Random choices would reliably catch contin-
uous misbehavior that affects lots of computations (e.g., if
the client has changed the laws of physics or made an object
disappear entirely), but a smart cheater might make changes
only when it matters most – say, disable collision detection
only for the one bullet that would have hit them. Thus, it
would be useful to focus audits on “critical” computations
– perhaps with some help from the creators, who could an-
notate important pieces of game state, such as player health
or the number of gold coins. If a problem is detected on a
player device, the infrastructure could simply take over its
part of the simulation, analogous to [1].
Key challenges: A metaverse platform would provide very
clear incentives for attacks in combination with a large at-
tack surface, since much of the “platform” consists of client
devices. This problem has been studied, e.g., in the context of
peer-to-peer games [80], but a metaverse service would have
an infrastructure component as well, and this should help [1].
In addition, many of the “classic” security challenges (user
authentication, confidentiality, etc.) apply as well.

4 DISCUSSION
Scaling the metaverse strikes us as a prime example of a prob-
lem that can only be solved collaboratively and by working
across domains – including at least graphics (SIGGRAPH),
gaming (GDC), systems (SoCC/SOSP/OSDI), and real-time
(RTSS/RTAS). Many of the challenges – rendering, anima-
tion, etc. – lie squarely in the traditional graphics domain,
but research in that domain so far has not focused on mas-
sive scalability or hard real-time guarantees. The systems
community has developed many massive-scale systems over
the years, but it has been focusing mostly on asynchronous
systems, without much attention to timing [81]. Timing is a
key focus of the real-time community, but that community,
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once again, has not been focusing much on either scalability
or virtual worlds. And the (typical) systems and real-time
researchers do not have the necessary expertise to structure
the “gameplay” for the metaverse, so that the worlds are
fun for the players and keep them engaged. Clearly, each
community has an important piece of the puzzle, but so far,
there is very little work that brings all of the pieces together.
Unfortunately, it also does not seem likely that the key

technologies could be developed independently and then sim-
ply combined. Virtual-world workloads are quite different
from the traditional workloads of the systems community
– for instance, due to their timing requirements and their
pervasive dependencies – and the key to scaling them may
lie in their specific properties, such as their spatial structure.
Likewise, the metaverse’s scheduling problems are unlike
any we have seen in the existing real-time literature – for
instance, due to their unique requirements, their scale, and
their many degrees of freedom – and it seems unlikely that
an existing technique, say, from embedded systems, would
apply out of the box. We suspect that a truly practical solu-
tion can only be developed together by all four communities.

5 RELATEDWORK
The metaverse vision has received a lot of attention, both
from the research community and from the press, so there
is a lot of existing work; see, e.g., [78] for a recent survey.
However, much of this work focuses on AR/VR headsets,
computer vision, etc.; here, we focus specifically on systems
challenges and especially on scalability.
To our knowledge, there is very little published research

on scaling virtual worlds to thousands of players and beyond.
The closest instance we know of is a concert by musical artist
Aurora within the mobile game Sky: Children of the Light,
which was watched by more than 1.6 million people [70],
with 4,000 players in each instance of the concert. This was
a hand-tailored system that took a lot of careful engineering.
Other platforms seem to be limited to a few hundred players
as well; for instance, van der Sar et al. [73] studied Minecraft
and found a limit of about 300–400 players.

Donkervliet et al. [19] suggests using serverless computing
to distribute the game server across multiple machines and
to provide it as a cloud service. While this would allow games
to grow beyond the capacity of a single server, it would not
lead to efficient scalability, at least not without the locality
properties we sketch here. Turchini et al. [72] sketches a
similar approach but envisions a P2P architecture, with cloud
VMs helping with crowded zones when necessary. JOT [51]
breaks a monolithic game server into modules but does so to
make programming easier; it does not mention scalability.
Improbable [34] has probably come closest to achieving

our vision. Its technology is impressive, but so far it has had
limited success, reportedly at least in part due to high cost

and a difficult programming model [66]. Its latest platform
supports at least 4,500 players per instance [68]. Hadean [28]
has apparently gone further during internal testing [69].
A variety of frameworks for scalable distributed systems

have been applied to online games, but, to our knowledge,
none of them can provide a single shared virtual world for
a large number of players. For instance, Akka [2] is used
by Fortnite under the hood [76], and Microsoft Orleans [47]
was used to provide cloud services for Halo [85], but Halo’s
Big Team Battle mode only supports up to 24 players [30],
and Fortnite’s Battle Royale mode is limited to 100 play-
ers [79]. Some research prototypes, such as RTF [23], also
exist. Vircadia [75] and Overte [50] are open-source meta-
verse platforms, but their scalability seems comparable to
that of the other platforms we mentioned; for instance, Virca-
dia’s home page says that its virtual worlds “can scale to hold
hundreds of people in the same space without instancing”.

Cloud gaming is a related approach in which cloud servers
perform both game execution and rendering on behalf of
the clients; the client devices merely display output frames
and accept inputs. This approach involves some related chal-
lenges, e.g., a slightly different form of speculation [40, 77].
Due to the high latencies and limited bandwidth in a WAN
environment, it is generally difficult to match the user expe-
rience of a local game with this approach.

6 CONCLUSION
Building a large-scale metaverse experience is challenging:
this seems clear from the limitations of existing platforms,
none of which can currently handle more than a few hundred
interacting players. Some of the challenges may be nontech-
nical, such as difficult programming models and high cost.
However, our central hypothesis in this paper is that there
are hard technical challenges at the heart of all this, many
of which have yet to be solved convincingly.

We think that these challenges could be fertile ground for
the cloud community. True, the workload will be unfamiliar
to many of us: some of the technology originated in multi-
player gaming, and so far the problem has not had much vis-
ibility here. But many of the solutions seem squarely within
our expertise: scalability, consistency, scheduling, and load
balancing are all classical cloud questions. This new class of
applications could be an exciting opportunity, and solving
the questions we have sketched here could be the key to
making the metaverse a reality.
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