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Abstract
This paper introduces Mycelium, the first system to process

differentially private queries over large graphs that are dis-

tributed across millions of user devices. Such graphs occur,

for instance, when tracking the spread of diseases or mal-

ware. Today, the only practical way to query such graphs

is to upload them to a central aggregator, which requires a

great deal of trust from users and rules out certain types of

studies entirely. With Mycelium, users’ private data never

leaves their personal devices unencrypted, and each user

receives strong privacy guarantees. Mycelium does require

the help of a central aggregator with access to a data center,

but the aggregator merely facilitates the computation by pro-

viding bandwidth and computation power; it never learns

the topology of the graph or the underlying data. Mycelium

accomplishes this with a combination of homomorphic en-

cryption, a verifiable secret redistribution scheme, and a mix

network based on telescoping circuits. Our evaluation shows

that Mycelium can answer a range of different questions

from the medical literature with millions of devices.

CCS Concepts: • Security and privacy → Privacy- pre-
serving protocols; Distributed systems security.

Keywords: federated analytics, differential privacy, graph

queries, mix networks

1 Introduction
Personal devices collect massive amounts of data that can en-

able fascinating applications. For instance, the words typed

by smartphone users could be (and in fact are) used to train
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predictive typing models, which allows phones to offer help-

ful word completions to users when they are typing. As

another example, the data collected by contact-tracing ap-

plications (via Apple and Google’s Exposure Notifications

API) could be used to understand how diseases spread, or

what environmental factors play a role. These are instances

of federated analytics (FA), whereby users, each of whom has

a device with some data, collaborate with an aggregator in
order to answer questions such as “how often does the word

‘system’ appear after the word ‘operating’?”.

Of course, user data—including infection status and demo-

graphic information—is very sensitive. Without assurances

on who will access their data or what insights will be drawn

from it, many users will not comfortably participate in an FA

system. One approach taken by prior work [17, 38, 42, 80, 81]

is to design the system to provide differential privacy [34], a

strong and mathematically rigorous privacy guarantee. With

differential privacy, FA systems can safely aggregate infor-

mation like the frequency of words from billions of user

devices while preserving the privacy of individuals.

While privacy-preserving FA systems have made consid-

erable progress [80, 81], existing systems lack support for

graph queries such as: “if a device is infected with malware,

how many of their contacts are infected within a week?”.

This is unfortunate, since graph queries can help study the

spread of malware, disease, and misinformation; they could

also test for “filter bubbles” and other social phenomena.

However, supporting graph queries privately is challeng-

ing due to fundamental differences from the queries tradi-

tionally studied in past FA work. In earlier systems, each

device analyzes only its local data (e.g., the words that the lo-

cal user has typed), and the answers are aggregated securely

across devices. But in a graph query, each device needs infor-

mation from other devices before it can provide its answer.

For instance, in the above example, even though each user

may know the identities of their contacts, they would need

to find out which of their contacts have been infected. Such

an operation raises three technical challenges:

• Topology privacy: How can vertices communicate with

other vertices without leaking the sensitive topology of

the graph to the aggregator? This is especially difficult

when the only entity guaranteed to know how to reach all
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vertices is the aggregator itself (e.g., a user may know the

IDs or names of their friends, but not their IP addresses).

• Neighbor data privacy: How can vertices collect data

from their neighbors and use it to produce their own

answer without violating the privacy of their neighbors?

For instance, in the above example, how can we prevent

users from learning their friends’ infection status?

• Scalability: How can the system support queries across

millions of devices? While it might be possible to build

an FA that operates over graphs using secure multi-party

computation across devices, these approaches do not scale.

To address these challenges, this paper introduces Mycelium,

the first FA system to support queries on massive graphs

distributed across a large number of participants. To address

scalability, Mycelium’s key insight is that, for many graph

queries, we can divide the computation into two steps: (1)

local computations that run in parallel on a small neighbor-

hood of each vertex and output a vector of local results, and

(2) a global aggregation step that combines the vertex-level

results into a single global output. This is analogous to how

frameworks such as Pregel [65] structure their queries, albeit

for different reasons. Mycelium cannot support every Pregel

query because not all of them are differentially private, but

Mycelium’s computation model is still quite general.

To guarantee topology privacy, Mycelium needs to pro-

vide a way for users’ devices to communicate with each

other so that they can obtain the inputs needed to execute

their local computation (vertex program). This is difficult in

many applications without disclosing the existence of the

communication to the aggregator. For example, the COVID-

19 exposure notification systems use pseudonyms for each

device, and there is no obvious way to communicate with the

owner of a pseudonym once it has moved out of Bluetooth

range. Mycelium solves this problem by using the aggregator

as a rendezvous point, while preventing it from learning the

topology of the graph in the process. The key idea is a new

mix network and a telescoping circuit mechanism inspired

by Tor [31] that allows devices to forward their requests via

other devices until the requests reach their destinations (§3).

To guarantee neighbor data privacy, Mycelium uses homo-

morphic encryption to aggregate encrypted histograms that

are sufficient to answer many queries of interest. We will

show several examples of such queries in Figure 2.

A key challenge with Mycelium’s mix network is that

devices are unlikely to all be simultaneously online, so a fast

mixing round could miss some devices—with consequences

for both privacy and accuracy. To compensate, Mycelium

uses long communication rounds (on the order of hours),

so all devices have a chance to contribute their answer; the

aggregator buffers messages as needed. Because of the long

delays, Mycelium is not suitable for interactive queries; it

is intended for longer-term social studies, such as disease

spread, investment patterns, or information propagation.

Analyst

Figure 1.Millions of participants form a graph. An analyst submits

queries to an aggregator who facilitates computing on the graph.

We have implemented a prototype of Mycelium, and we

use a combination of small-scale benchmarks and extrapo-

lation to show that it can scale to millions of devices. The

cost to the aggregator is well within the means of a typical

data center, and the costs to individual devices are moderate:

for a typical query, each device will incur around 430 MB of

bandwidth and spend 15 minutes of computation. A small,

randomly chosen set of devices will need to spend more, but

the costs are comparable to what prior FA systems [80, 81]

require at similar scales, even though these systems do not

support graphs. In summary, our contributions are:

• A mix network with verifiable telescoping circuits (§3);

• Mycelium: the first FA system to support graphs (§4);

• A prototype implementation (§5) and experimental eval-

uation (§6) of Mycelium.

2 Federated analytics over graphs
We target a setting (illustrated in Figure 1) where there are

a large number of participants, each of whom has a per-

sonal device that contains sensitive information (e.g., finan-

cial records, demographic information, health details). Each

participant is identified by one or more pseudonyms, and
participants may know some of the pseudonyms of other

participants. For instance, in the case of Google and Apple’s

Exposure Notification System (GAEN) [2], the devices are

users’ smartphones; the sensitive information includes users’

infection status, time of diagnosis, and locations visited; the

pseudonyms could be the Rolling Proximity Identifiers (RPIs),

which each phone broadcasts to other nearby phones via

Bluetooth Low Energy, or some fixed identifier. Overall, we

can think of this data as representing a large graph, with

one vertex for each participant and a directed edge (p1, p2)
whenever p1 knows at least one of p2’s pseudonyms.

There is also a central aggregator, who wishes to run large-

scale queries over this graph and is willing to coordinate

the necessary computation. Note that these queries are not

real-time queries; at this scale, they may take hours or days

to complete. We assume that the aggregator has substantial

computational and bandwidth resources, perhaps in the form



Query Application Description

Q1 [6, 78] Histogram of the number of infections in an infected participant’s two-hop neighborhood, within 14 days

SELECT HISTO(COUNT(*)) FROM neigh(2) WHERE dest.inf ∧ self.inf

Q2 [28, 68, 73] Histogram of the amount of time A has spent near B, if A is infected within 5-15 days of contact with B
SELECT HISTO(SUM(edge.duration)) FROM neigh(1) WHERE self.inf ∧ (dest.tInf∈[edge.last_contact+5,edge.last_contact+10])

Q3 [16, 28, 68] Histogram of the frequency of contact between A and B, if A infected B
SELECT HISTO(SUM(edge.contacts)) FROM neigh(1) WHERE self.inf ∧ dest.tInf ∧ (dest.tInf>self.tInf+2)

Q4 [16] Secondary attack rate of infected participants if they travelled on the subway

SELECT HISTO(SUM(dest.inf)) FROM neigh(1) WHERE onSubway(edge.location) ∧ self.inf

Q5 [68] Histogram of the number of distinct contacts within the last 24 hours, for different age groups

SELECT HISTO(COUNT(*)) FROM neigh(1) GROUP BY self.age

Q6 [28, 52, 68] Histogram of secondary infections caused by infected participants in different age groups

SELECT HISTO(COUNT(*)) FROM neigh(1) WHERE self.inf ∧ dest.tInf ∧ (dest.tInf>self.tInf+2) GROUP BY self.age

Q7 [16, 48, 68] Histogram of secondary infections based on type of exposure (such as family, social, work)

SELECT HISTO(COUNT(*)) FROM neigh(1) WHERE self.inf ∧ dest.tInf ∧ (dest.tInf>self.tInf+2) GROUP BY edge.setting

Q8 [52, 75] Secondary attack rates in household vs non-household contacts

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE self.inf GROUP BY isHousehold(edge.location)

Q9 [58, 68] Secondary attack rates within case-contact pairs in the same age group vs different age groups

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE dest.age∈[0,100] ∧ self.age∈[dest.age-10,dest.age+10]

Q10 [52] Secondary attack rates at different stages of the disease (incubation period vs illness period)

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE self.inf ∧ (dest.tInf>self.tInf+2) GROUP BY stage(dest.tInf-self.tInf)

Figure 2. Example queries. CLIP commands and histogram bins have been omitted.

of a data center. The aggregator works with at least one

analyst, who formulates the queries to be run. In the case

of GAEN, the aggregator could be Google or Apple, or the

government agencies that run the Diagnosis Servers; the

analysts could be some carefully vetted epidemiologists.

We assume that devices are usually (though not always)

online. Devices could be behind NATs or firewalls, or they

could go offline for brief periods of time due to loss of cellular

coverage or whenever they run out of power.

2.1 Example queries
We now provide a few examples of queries that we wish

to support. For concreteness, we focus on queries proposed

in the infectious disease literature, even though Mycelium

is general and can handle graph queries for other domains.

Figure 2 summarizes the queries, along with the motivating

works, and the corresponding SQL-like syntax.

Superspreading is a well-established phenomenon for in-

fectious diseases [37, 62], and there is work that quantifies

the role of superspreaders in pandemics [6, 16, 58, 61]. For

example, two works [6, 78] investigate data containing infor-

mation about chains of transmission or clusters originating

from a primary source. Such queries can be formulated as

which calculate the number of infected individuals in the

N-hop neighborhood of the primary source.

Another line of research analyzes the conditions under

which infections most likely occur [16, 28, 48, 52, 58, 68, 75].

In particular, these works calculate secondary attack rates

(the probability that an infected individual transmits the dis-

ease to an exposed contact) [52, 58] under various conditions.

For example, several works [16, 28, 48, 52, 58, 68, 75] explore

secondary attack rates of infected individuals across sex, age,

household sizes, and epidemic phases; others [16, 48, 68]

explore secondary infections based on exposure type. User

devices provide access to location and demographic data,

which makes such queries possible. Additionally, with tem-

poral data we can answer queries such as Q2 and Q3.

Right now, these queries are answered through manual

tracing; for instance, one study uses data from 391 cases and

1,286 of their close contacts in China [16]. A deployment

in a GAEN-like system could potentially provide access to

larger data sets. Even in cases where data is collected by a

country’s public health system [75], privacy concerns still

exist [33]. A system like Mycelium would allow queries over

sensitive data without violating the privacy of individuals.

Although these queries look different, they are structurally

similar: they (1) look at a small “neighborhood” around each

vertex in the graph, such as the vertices within two hops; (2)

compute something across this neighborhood, such as the

number of infections; and finally (3) compute some aggregate

statistic about these numbers, such as a histogram.

2.2 Threat model and goals
We assume that all parties—the participants, the aggrega-

tor, and the analysts—could be potentially malicious (Byzan-

tine). However, following prior work [80, 81], we use the

OB+MC assumption: we assume (1) the aggregator is honest-

but-curious at the beginning and usually thereafter, but could

be occasionally Byzantine (OB) for brief periods, and (2) most

of the participants are correct (MC), except for perhaps 1–2%.

OB basically models a system compromise or an inside at-

tacker who may control the aggregator arbitrarily, but only

for a short period of time. If the aggregator were malicious all



the time, it could manufacture an unbounded number of col-

luding Sybils, defeating all known defenses. With 100 million

devices, MC still means that there will be 2million Byzantine
participants. Our goal is to provide the following properties:

• Output privacy: The output of the query should not leak
(much) information about the data of individual users, or

about the presence or absence of particular edges.

• Neighbor data privacy: The computation that is used

to answer the query should not reveal anything about a

given user’s sensitive data to other users.

• Topology privacy: The computation should not reveal

the presence or absence of an edge to the aggregator.

Notice that we do not try to achieve topology privacy be-

tween users; our solution does leak a very small amount of

information about the topology to nearby users, which is the

presence of multiple paths between two users. This is out

of necessity: if we tried to perfectly hide the topology even

from nearby users, we could not avoid double-counting data

from different pseudonyms of the same user, which would

severely limit accuracy. However, users already know, or can

know, most of the information that is being leaked, since

edges are formed through formal relationships or physical

proximity. Another non-goal is that we do not try to protect

the aggregator from itself: if the aggregator tells lies or oth-

erwise misbehaves during one of its Byzantine periods, it

can permanently lose the ability to ask additional queries

and would then have to reinitialize the entire system.

In addition to the above three properties, we are inter-

ested in solutions that can efficiently scale to millions of

participants and do not require additional trusted parties.

2.3 Background: Differential privacy
For output privacy, we adopt differential privacy [34], a for-

mal definition that bounds how much an adversary can learn

about an individual participant from the output of (random-

ized) queries over a database – in our case, the graph. Infor-

mally, a query is differentially private if adding or remov-

ing one participant’s data results in “almost no change” in

the probability distribution of the output. This guarantee is

quantified with a parameter, ϵ , that controls how much the

distribution over the output can vary. Formally, a query q is

ϵ-differentially private if, for any graphs d1 and d2 that differ
in one vertex and the edges connected to that vertex, and any

set of outputs R, Pr[q(d1) ∈ R] ≤ eϵ · Pr[q(d2) ∈ R]. That is,
removing one participant results in at most a multiplicative

change of eϵ in the probability of any set of outputs.

A standard method for achieving differential privacy for

numeric queries is the Laplace mechanism [34], which in-

volves two steps: first calculating the sensitivity s of the
query—which is how much the un-noised output can change

based on removing a single user—and second, adding noise

drawn from a Laplace distribution with scale parameter s/ϵ ;
this results in ϵ-differential privacy.

In general, differential privacy is difficult to achieve for

graph data because graph properties are highly sensitive to

changes in vertices and edges. For instance, an undirected

linear graph with n vertices has diameter n, but the addition
of a single edge between the first and the last vertex cuts the

diameter to
n
2
. However, the queries in Table 2 are fairly local;

they basically count the vertices whose k-hop neighborhood

has a certain property. This type of query tends to have a

low sensitivity bound that can be computed statically (§4.7).

2.4 Strawman solutions
To illustrate the challenges of this scenario, we discuss two

strawman solutions.

Plain text. Participants could upload their data and the

observed pseudonyms to the aggregator, who could answer

queries with standard systems such as GraphX[45] or Graph-

Lab [63]. However, this requires users to trust the aggregator,

since it can learn the data and the edges of all users.

MPC.Multi-party computation (MPC) [87] is a way for mul-

tiple parties to jointly compute a function on their private

data, such that no party learns anything beyond what the

output of the function implies. A large MPC between all
participants that aggregates results and adds noise could

achieve our privacy goals, but we are not aware of any MPC

that can scale beyond a few hundred participants, whereas

our scenario can involve millions.

2.5 Our approach
Our key insight is that scalability can be achieved by split-

ting the computation into two parts: a local part that can

be executed by the devices themselves, by exchanging mes-

sages with other devices that they share an edge with, and a

global part that efficiently aggregates the results of the local

part. We adapt Orchard [81] for the global aggregation (§4.2);

Mycelium’s key contributions are the local computation for

graphs, the communicationmechanism between devices, and

eliminating the need to generate new cryptographic keys for

each query. (At the scale of millions of devices, key distribu-

tion is a significant source of overhead and complexity.)

Mycelium executes queries as vertex programs, analogous
to queries in Pregel [65]. Each vertex has some local state,

which is initially the private data of the corresponding par-

ticipant. The computation then proceeds in discrete rounds

that each consist of a communication step and a computa-
tion step. In the communication step, each vertex can send

a message to each of its direct neighbors in the graph; in

the computation step, each vertex can optionally update its

state, based on the messages it has received. After a fixed

number of rounds, each on the order of an hour, each vertex

must set its state to a vector of numbers. These vectors are

then summed up in a final aggregation step, which also adds

the noise that is required for differential privacy and then

outputs the final vector of noisy sums.



The separation into a local and a global part is key to

scalability because it preserves the information about the

graph topology. Recall from Section 2.1 that queries in our

scenario typically examine a small local area around each

vertex (e.g., the two-hop neighborhood). Thus, the data of

each vertex can influence at most a small, constant number

of other vertices. If d is an upper bound on this number,

and N is the number of devices, we can compute the final

result with O(N · d) operations. But if the topology of the

graph is encrypted, the information about which vertices

can influence each other is lost; any vertex could potentially

influence any other vertex. Thus, there is no obvious way to

avoid operations on all possible pairs of vertices, resulting in

O(N 2) operations. With millions of vertices, this can make a

difference of several orders of magnitude.

3 Communication
In Mycelium’s local phase, the devices need to be able to

exchange messages with their direct neighbors in the graph,

without giving away details of the topology. This is not

completely straightforward, because (a) the devices only

know their neighbors’ pseudonyms, not their identities or IP

addresses, and (b) since the devices can be behind firewalls

and occasionally go offline, a device and its neighbor may

not be able to establish a direct connection, or may never

even be online at the same time. We solve this problem using

a type of mix network where devices act as mixes and the

aggregator acts as an (untrusted) mediator for all messages.

3.1 Assumptions and goals
Our goal is a primitive send((h1,m1), . . . , (hd ,md)) that de-

livers a set of messages {m1, . . . ,md} to the holders of pseu-

donyms {h1, . . . , hd}, respectively, with high probability. We

make the following assumptions:

1. There is an upper bound d on the degree of each vertex.

2. Devices’ clocks are loosely synchronized.

3. Devices have a key pair (pki, ski) for each pseudonym

hi, and pki is linked to the pseudonym hi (hi = H (pki)).
4. All devices know (a) a tight upper bound, ND , on the

number of devices, and (b) a bound P on the number of

pseudonyms that a valid device could have generated

within the time period for which a query is valid.

5. There is a public bulletin board (blockchain) that pre-

vents the aggregator from equivocating to the devices.

3.2 High-level approach
At a high level, we use onion routing. A device s sends a
messagem to a pseudonym t, by routingm through a chain of

k other devices: s chooses k pseudonyms h1, . . . , hk and then
sends Encsk1 (Encsk2 (. . . , (Encskk (Encskt (m))))) to the first hop

h1; h1 removes a layer of encryption and sends the result to

h2; and so on, until hk sends the messagem to the destination

t. If k > 1 and at least one device on the chain is honest, the

edge between s and t is hidden.

Since devices cannot communicate directly, Mycelium re-

laysmessages through the aggregator, whomaintains a “mail-

box” per pseudonym. This must be done with care: if devices

pick up the messages from their mailboxes one at a time, the

aggregator could observe that a message deposited by Alice

is picked up by Bob, and that Bob then deposits a message in

Charlie’s mailbox—revealing the chain. We address this by

proceeding in discrete rounds and ensuring that each device

mixes and forwards different messages in each round. (We

call these C-rounds to distinguish them from rounds of the

vertex program.) Thus, the aggregator can only observe, say,

that Bob picks up several messages, including Alice’s, and

that Bob then deposits messages in several other mailboxes,

including Charlie’s. If each device forwards a batch of b mes-

sages in each C-round, and there are at most c devices on the

chain colluding with the aggregator, then a given message

could be in bk−c mailboxes after k C-rounds. For sufficiently

large b and k, and small c in expectation, this makes it hard

for an adversary to link messages.

The above presupposes that devices are always online,

that colluding devices are honest but curious, and that the

aggregator does not drop messages. We discuss how to han-

dle a malicious aggregator later. To handle devices that go

offline or drop messages, it is not sufficient to send a single

copy of a message to a target as the message may never reach

it. To guard against this, each device sends r replicas of each
message over different chains. Additionally, to hide the ver-

tex degrees, each device always sends d different messages;

if it has fewer than d neighbors in the graph, it sends extra

messages to itself, somewhat analogous to Loopix [77].

If every device sends messages to d targets and uses r
replicas of each message, the expected batch size is b = r · d.
Since bigger batches lead to better security, we restrict the

choice of hops to a random fraction f of the nodes. This

means that when a device is selected as a routing node, it will

handle more messages but be selected less frequently. This

increases the batch size by a factor 1/f , without increasing
the average workload.

3.3 Initialization
To make the above approach work, devices must be able to

pick random pseudonyms for building their chains, without

giving the aggregator a way to bias the choice towards col-

luding devices. For this purpose, the aggregator creates a

verifiable map M1 that maps each integer in [1,ND · P] to
a different pseudonym. Since a malicious aggregator could

omit pseudonyms or include pseudonyms more than once, it

is required to also create a second map M2 that can be used

to audit the first map. This works as follows.

When a new query is issued, the aggregator begins by

compiling a list of the P most recent pseudonyms each device

has used. It then randomly assigns each device a unique

device number in the range [1,ND], and each pseudonym a

unique pseudonym number in the range [1,ND · P]. Next, it
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Figure 3. Steps for relaying a first message from Alice to David through Bob (so k = 1). Rounds are separated by vertical lines. Steps (1)–(5)

correspond to the first 3 rounds and are for path establishment; Steps (6)–(9) are for forwarding. Alice gets the key for pseudonym B (Bob’s),

directly from the aggregator in Step 1 and then asks B to look up the key for D (David’s) in Step 2. After Bob sends an ACK to A (Step 3), it

waits k rounds, looks up the key for D, and sends it to A (Steps 4–5). Finally, Alice sends her message along the path (Steps 6–9).

createsM1 as a binary Merkle hash tree (MHT), whose leaves

are of the form (hi, pki, di), where hi is the i-th pseudonym,

pki is the corresponding public key, and di is number of the

device that owns the pseudonym. To ensure that the devices

have a consistent view, the aggregator then commits to M1

by posting the root of the MHT to a bulletin board.

Using this information, a device could theoretically look

up the n-th pseudonym and its public key by sending n to

the aggregator. The aggregator could then take a binary

representation of n and walk down M1’s MHT starting from

the root, taking a left on level i if the i-th bit of n is zero,

and a right otherwise. This would take it to the n-th vertex

from the left. The aggregator could then return that vertex’s

information to the device, along with an inclusion proof

(hashes along the path from the leaf to the root), and the

device could verify the response by checking that (a) the

pseudonym matches the public key, and (b) the path in the

inclusion proof matches the path the aggregator should have

taken for n. In practice, such a direct lookup would tell the

aggregator that the device is using the n-th pseudonym in a

chain; we discuss how to fix this in Section 3.4.

To enable the devices to audit M1, the aggregator also

prepares another verifiable map M2, which maps each de-

vice number to a leaf (H (h1), . . . ,H (hP ),H (pk1), . . . ,H (pkP )),
where the hi are the pseudonyms this device has used and

the pki are the device’s public keys. The root of this tree is
posted to the bulletin board as well. Each device then per-

forms two checks using M1 and M2. First, it looks up its own
pseudonyms in M1 and checks the inclusion proofs. Thus, if

the aggregator has omitted an honest device’s pseudonyms,

that device will detect the problem. Second, each device ran-

domly looks up x pseudonyms, extracts the corresponding

device numbers di , and asks the aggregator to show that one

of the H (pkj) hashes in the di-th leaf of M2 corresponds to

the pseudonym the device has retrieved. If a device submits

a lot more than P pseudonyms, this check will fail with high

probability, since each ofM2’s leaves can hold only P entries;

if a device assumes multiple identities, the aggregator will

run out of space in M2, which can have only ND leaves.

Starting with the posting of the MHT roots, devices use

their clocks to mark the fixed length of each C-round.

3.4 Path setup
Each device randomly selects r k-hop “paths” for each of

the d messages it will send. Recall that the hops should be

picked from among a fraction f of the devices. The devices

select each hop i from 1 to k by picking a random number x
from [1,ND · P] such that (i− 1) · f ≤

H (x | | B)
Hmax

< i · f , where H
is a cryptographic hash function, Hmax is the maximum hash

value, and B is a random bitstring that is chosen collectively

as, e.g., in Honeycrisp [80]. Notice that at this point the

position of each pseudonym in M1 is fixed, so a malicious

adversary cannot bias the selection towards its confederates.

So far, the devices know only the index of their desired

hops in M1. However, they need to know the actual pseudo-

nyms and establish a shared (symmetric) key with each hop.

They cannot ask the aggregator for the pseudonyms directly,

since this would give away the intended path. Instead, we

use a variant of the telescoping scheme from Tor [31], which

we describe next (and illustrate in Figure 3). For ease of

exposition, we discuss the protocol in terms of a single device

and a single path h1, . . . , hk , but the steps are done in parallel

across all devices’ d · r paths.
In the first C-round, the source device s looks up the pseu-

donym h1 and public key pk1 for its first hop by communi-

cating directly with the aggregator. (In this step and all that

follow, the response includes both the leaf and the inclusion

proof, and the device verifies them in the same way as in

Section 3.3.) This is safe because the aggregator will be able

to observe the connection to the first hop anyway. s then gen-
erates a symmetric key sks↔h1 and a random path id ps↔h1 ,

and uses an authenticated encryption scheme (AE) to en-

crypt the identity of the next hop, h2, with sks↔h1 ; s encrypts
sks↔h1 using public key encryption (PEnc). Finally, s deposits
ps↔h1 | |PEnc(pk1, sks↔h1 )| |AE(sks↔h1 , h2) in h1’s mailbox.

Once all devices have deposited their messages, the ag-

gregator computes (a) a mailbox MHT over the messages

in each mailbox, and then (b) a C-round MHT over all the

inner MHTs. It then commits the root of the C-round MHT

in the bulletin board, and then proves to each sender that

its messages were included in the MHT. This prevents the

aggregator from dropping messages without detection. If

some devices do not receive the proof from the aggregator,



they post a challenge on the bulletin board. If the aggrega-

tor did receive messages from these devices, it can respond

with the correct proofs; if a challenge is not answered, the

other devices refuse to proceed, and the path setup has to be

restarted without the relevant devices.

Next, h1 retrieves the batch of messages from its mailbox,

and asks the aggregator to reveal the MHT for this mailbox,

so it can verify that it has received all the messages. If no

misbehavior is detected, h1 looks up all the public keys for

the requested pseudonyms (e.g., h2) in random order. Then

h1 puts AE(sks↔h1 , pk2) in s’s mailbox; this corresponds to

h2’s public key pk2 encrypted under the shared symmetric

key between s and h1. At the end of the C-Round, s checks
its own mailbox and decrypts the message to learn pk2.
During the next C-Round, s generates a fresh symmet-

ric key for h2, sks↔h2 , encrypts it under pk2, and sends to

h1: ps↔h1 | |AE(sks↔h1 , PEnc(pk2, sks↔h2 )| |AE(sks↔h2 , h3)). h1
then fetches messages from its mailbox and checks the MHT.

Finally, h1 removes the outer layer of encryption of the mes-

sage from s, generates a new path id ph1↔h2 , locally stores the

map ph1↔h2 to ps↔h1 (to be used in later rounds), and deposits

ph1↔h2 | |PEnc(pk2, sks↔h2 )| |AE(sks↔h2 , h3) in h2’s mailbox.

This process continues hop by hop: h2 looks up the key

for h3, h3 the key for h4, and so on, until hk is finally asked

to look up the key for the destination dst. One issue is that,
when hk receives a batch of requests to fetch the public keys

of the final destinations (one of which is dst), hk cannot

proceed right away. This is because a malicious penultimate

hop (hk−1) could drop the final request sent by s where it tells
hk to fetch dst’s key. If hk were to fetch the keys immediately,

the aggregator would observe that dst’s public key is fetched
fewer times than every other device’s, thereby revealing that

a device who had hk−1 as a penultimate hop had an edge

to dst—shrinking the anonymity set of dst’s edge from (r ·
d/f )k to (r · d/f )k−1 possible sources. To avoid shrinking the
anonymity set, hk sends an ACK to all sources through the

reverse paths, confirming that it has received their requests;

if a source doesn’t get an ACK, it complains. If hk does not see
any complaint in the bulletin board in k rounds, hk fetches
the public keys in its batch (including dst’s). If a source

complains, then the last hops in all paths refuse to fetch

public keys, and path setup is restarted. On any reverse path

to the source, each honest hop knows how many messages

it should receive, and aborts if any message is dropped.

At the end, each device knows the pseudonyms and pub-

lic keys for all the hops along its chosen paths, and it has

established a shared symmetric key with each hop. With k
hops, this process requires 2 + 4 + 6 + … + 2k + k = k2 + 2k
C-rounds. However, k should normally be small, and the

process is run infrequently in order to let new devices join

the system. With k = 3 and one-hour C-rounds, path setup

would take about half a day, which gives flexibility to devices

so they can participate even if they briefly go offline.

3.5 Message forwarding
Once the paths are set up, communication is as follows. One

communication round of the vertex program requires k+1 C-
rounds. In the first C-round, the devices onion-encrypt their

messages, as described in Section 3.2, and deposit them in

the mailboxes of their first hops with the path ids generated

during the path setup. Then, in each subsequent C-round,

each hop downloads themessages from their mailbox, checks

to make sure the aggregator did not drop any messages,

removes one encryption layer, and mixes them. Finally, they

use the mapping generated during path setup to determine

the appropriate path id for each message, and upload these

with each message to the mailbox of the next hop.

A complication is that the failure of a device could give

away some message paths to the aggregator. For instance,

suppose that, in a previous round, Charlie downloaded mes-

sages from Alice and Bob, and uploaded messages to Doris

and Eliot, but in the current round, the message from Al-

ice is missing. If Charlie were to upload a message only to

Eliot, the aggregator would be able to conclude that Doris

was the next hop after Alice on some path. To counteract

this, each hop uploads a dummy message for the next hop

for which they do not have a valid message. That way, the

communication pattern remains unchanged.

Generating dummies. If messages between a source s and
each hop hi in its path are encrypted with authenticated

encryption (AE), then it is infeasible for a forwarding de-

vice to generate dummies that decrypt properly owing to

AE’s existential unforgeability guarantee. This enables the

following attack. Let the attacker control hi−1 and hi+1. The
attacker uses hi−1 to drop a message, so hi generates a ran-
dom dummy to mask the missing message, and then the

attacker uses hi+1 to detect which of the messages it received

are invalid—thereby learning the relationship between the

input and output path ids of hi. To prevent this, we observe

that we only need ciphertext integrity between s and the

destination dst. Hence, s can construct an onion encryption

where the inner ciphertext (the message to dst) uses an AE

that is indistinguishable from a random message of the same

length. For example, encrypt with a stream cipher, then MAC

with a PRF, and use the monotonically increasing round num-

ber as a nonce (not sent with the ciphertext to avoid known

privacy pitfalls [14]). All other onion layers use a symmet-

ric cipher (SEnc in Figure 3) that is indistinguishable from

random but that lacks a MAC. This allows hi to generate a
random dummy message which hi+1 cannot detect as invalid.

4 Query processing
Mycelium evaluates queries in two stages: first, each vertex

evaluates a local query over its own k-hop neighborhood

(say, to compute the number of infected contacts this vertex

has), and then the results of the local queries are summed

up, noised, and reported to the analyst (say, as a histogram



showing what fraction of users have a certain number of

infected contacts). In the following, wewill refer to the vertex

at the “center” of a given local query as the origin vertex.
Mycelium uses a subset of SQL, with two small extensions,

to specify the local queries.

Conceptually, the queries “see” the data as a table neigh(k)
that contains a row for each member of the k-hop neighbor-

hood, including the origin vertex. The columns of this table

are: (a) the private data of the origin vertex (self); (b) the pri-
vate data of the relevant neighbor (dest); and (c) the private
data associated with the first edge on the path from the ori-

gin to the neighbor (edge). Queries can ask for COUNTs and
SUMs over columns; we obviously cannot allow direct queries

for private data. The WHERE predicate can use conjunctions

and disjunctions, as well as arbitrary tests within the same

column group (e.g., a comparison of two self values). It

can also contain inequalities over values from different col-

umn groups (e.g., dest.tInf>self.tInf+2, as in Q3, to

test whether a neighbor was diagnosed more than 2 days

after the origin vertex) as long as both take a finite number of

discrete values. Finally, queries can use GROUP BY over self
columns to report statistics for different attribute values.

One extension to SQL is that queries must choose whether

the outputs of the local queries should simply be summed

up globally (GSUM), perhaps to compute a secondary attack

rate as in Q8, or aggregated into a histogram (HISTO), as
in Q1. Another extension is that GSUM queries must specify

a “clipping range” [a, b]; if the computed value is below or

above this range, it is clipped to a or b, respectively.

4.1 HE encoding
The two biggest challenges with our protocol are (1) how to

implement histograms, and (2) clipping without compromis-

ing output privacy or neighbor data privacy.

Suppose, for instance, that we wanted to compute how

many users have between 0 and 2, between 3 and 5, and

more than 5 infected contacts. Naïvely, we would use private

comparisons to implement this: each contact encrypts either

0 or 1, depending on whether they are infected, and sends the

ciphertext to the origin vertex, which computes the sum S of

the values and then uses homomorphic encryption (HE) to

compute, say, IF (0<=S<=2) THEN 1 ELSE 0 for the first

bin of the histogram. However, private comparisons between

ciphertexts and plaintexts are extremely expensive.

Instead, we use the following technique. We rely on the

leveled homomorphic cryptosystem1
by Brakerski-Gentry-

Vaikuntanathan (BGV) [20], whose plaintexts are polyno-

mials of degree N with integer coefficients, and we encode

the value a (e.g., 0 or 1 in the above example) as the poly-

nomial xa. Then we can use BGV’s homomorphic multi-

plication to add up encoded values: if a device receives

Enc(xa) and Enc(xb) from two neighbors, it can compute

1
A leveled HE supports additions and a small number of multiplications.

Enc(xa+b) = Enc(xa) · Enc(xb). BGV’s homomorphic addition

then becomes a “bin” aggregation: if one receives Enc(x0+x1)
and Enc(x0 + x2), then summing these ciphertexts produces

Enc(2x0 + x1 + x2), which is an encrypted polynomial where

the i-th coefficient gives the number of times that bin i was
selected. We can also compute the values in a coarser bin,

say [0, 2], by adding up the coefficients of x0, x1, and x2.
The price to pay is that (1) our encoding cannot support

more bins than the degree N of the polynomial, (2) the num-

ber of local summands cannot exceed the number of multi-

plications BGV can support, and (3) the number of values to

be aggregated cannot exceed the range of the coefficients.

This seems fine in our setting: we use N = 32, 768, which is

far larger than, say, the number of infected friends a given

user can have; for reasonable parameters, BGV can support

dozens of multiplications; and, with a plaintext modulus of

2
30
, we can “bin”-aggregate more than a billion values.

4.2 Aggregation with Orchard
Orchard [81] has the ability to answer a range of non-graph

queries, in an otherwise similar setting to ours. The work-

flow of Orchard also requires a homomorphic encryption

scheme, albeit only a simpler additive one. Devices encrypt
their data and send them to a central aggregator, who sums

up ciphertexts. However, the aggregator does not hold the

keys for decryption—instead, they are secret shared among

a randomly elected committee of 10–20 user devices, which
use MPC to perform key generation and decryption. The ag-

gregator first uses a summation tree to prove to each device

that its data has been included in the sum exactly once; then

it sends the aggregate ciphertext to the committee, which

decrypts it, adds noise for differential privacy, and returns it

back to the aggregator as the final result to the query. This

process can be composed over multiple queries, as long as a

privacy budget is tracked (see Section 4.4).

Mycelium makes two modifications to Orchard. First, it

replaces Orchard’s additively homomorphic cryptosystem

with BGV [20], in order to support both homomorphic addi-

tions and multiplications. Second Mycelium observes that, in

prior FA systems (including Orchard), each time an analyst

wants to run a new query the system must generate and

distribute new cryptographic keys to all devices. For systems

with millions or billions of devices, such key distribution

is both costly and complex. Instead, Mycelium leverages a

verifiable secret redistribution scheme (VSR) [46] to generate

all the cryptographic keys once, distribute them to all de-

vices, and then transfer the corresponding private key from

one committee to another in such a way that members of

different committees cannot collude to recover the key.

In more detail, at the beginning of Mycelium’s operation,

a set of non-colluding parties, which we call the genesis com-
mittee, generates all the necessary public keys (including

relinearization keys which the BGV scheme uses to keep ci-

phertext small after multiplications) and keep secret shares of



the corresponding decryption key such that no non-majority

of parties can reconstruct the decryption key.

The genesis committee will then transfer ownership of the

decryption key shares to the first randomly chosen commit-

tee in Mycelium using VSR. Subsequent rounds of Mycelium

will likewise perform a VSR transfer of the decryption key

from the old committee to a new committee, completely

eliminating the need for Orchard’s expensive key generation

phase. We give more details in Section 5.

4.3 Basic protocol: Single hop
We first give a protocol where a vertex can answer a query

that requires information about its immediate neighbors,

and then generalize to a k-hop neighborhood in Section 4.4.

Processing a query SUM over a particular attribute such as

SUM(dest.inf) consists of the following steps. First, the

origin vertex sends a query ID q to all of its neighbors, so

they know to which query to respond. Second, each neighbor

sends back to the origin vertex a ciphertext Enc(xb). In the

case of a SUM, b is the value of the attribute; in the case

of a COUNT, b is 1 if the predicate applies, and 0 otherwise.

After collecting the ciphertexts from each of the neighboring

vertices, the origin vertex sums up the encoded values by

multiplying the received ciphertexts together, as discussed

in Section 4.1. The result is a ciphertext of the form Enc(x i),
where i represents the result of the local query over the

origin vertex’s local neighborhood.

As we discuss later, all of these ciphertexts are then glob-

ally aggregated using BGV’s additive homomorphism, result-

ing in a final ciphertext of the form Enc(
∑N−1

i=0 cix i), where ci
is the number of origin vertices that obtained i as the result
of their local query.

4.4 Basic protocol: Multiple hops
We now generalize the above protocol to k-hop neighbor-

hoods. For now we assume queries that do not (1) use GROUP
BY, (2) compute sums over edges, or (3) compare fields from

different column groups. In Table 2, Q1, Q2, and Q4 are of this

type. For simplicity, we will assume that the WHERE predicate
is already in conjunctive normal form.

Flooding. A query over the k-hop neighborhood neigh(k)
proceeds in 2k rounds. As in the single-hop case, in the first

round each origin vertex sends a query ID q to its neigh-

bors. In the following k − 1 rounds, these messages flood to

the k-hop neighborhood as follows. When a node receives

a message with a given query ID, it remembers from which

neighbor it got it. We call this neighbor the upstream neigh-
bor. The message from the upstream neighbor is forwarded

to all other neighbors. Thus, at the end of the k-th round,

each node in the k-hop neighborhood of each origin vertex

(a) has received a message from that vertex, (b) knows its up-

stream neighbor, and (c) knows its distance from the origin

vertex, which is simply the number of the round in which

the message with a given query ID was first received.

Processing: In the k + 1-th round, for each upstream neigh-

bor, each vertex evaluates the arguments of each SUM or

COUNT over its local data; for instance, if the query asks for

a SUM(dest.inf), each node would look up its infection

status, yielding a local result ri. Next, the vertex evaluates
the dest clauses of the WHERE predicate over its local data; if
they all evaluate to true, the vertex computes Enc(xri ). If one
of the predicates evaluates to false, it computes Enc(x0).
Finally, each vertex at distance k from the origin takes each

encrypted result and then sends it to the relevant upstream

neighbor. If a node drops off in the middle of a computation,

their value defaults to Enc(x0), and will thus have a neutral

effect on the query’s results. From a privacy perspective, this

leaks no information about the node’s underlying data.

Local aggregation. In round k − i, each vertex at distance

k − i from the origin receives a ciphertext from each of its

neighbors. The vertex evaluates the dest clauses and, if they
all evaluate to true, it multiplies all ciphertexts together,

along with an encryption of its own value. The effect is that

the vertex now holds an encryption of the sum of the encoded

values that have been aggregated so far. Finally, unless the

vertex is the origin vertex, it sends the result to its upstream

neighbor. If a clause evaluates to false, it sends Enc(x0).

Final processing. In round 2k, the origin vertex holds a

ciphertext which contains the aggregated values over the

entire k-hop neighborhood. The origin vertex then evaluates

the self predicates from the WHERE clause; if any evaluate

to false, it replaces the ciphertext with Enc(0). The origin
vertex then contributes the ciphertext for global aggregation.

Global aggregation. The global aggregator receives the ci-
phertexts from all of the origin vertices and sums them all

up. Then, the aggregator gives these ciphertexts to the com-

mittee who has the corresponding decryption key (§4.2). The

committee then decrypts the final ciphertext and adds a cali-

brated amount of noise based on the query before releasing

the result. In particular, let p be the plaintext encoding the

underlying aggregated values. For histogram queries, the

coefficients of p that fall into each bin of the histogram are

summed up, and then, after adding some noise to each bin,

the results are released to the analyst. For GSUM queries with

a clipping range [a, b], the committee clips the range of out-

puts by computing

∑b−1
i=a+1 i · pi + a · (

∑a
i=0 pi) + b · (

∑N
i=b pi)

and then adds noise and releases the sum to the analyst.

Privacy budget. To bound the privacy loss from multiple

queries, the committee maintains a “privacy budget” from

which the ϵ cost of each new query is deducted. This is a

common approach [34, §3] used in prior FA systems. Our

prototype subtracts the full ϵ of each query from the bud-

get, which is safe but conservative. There are several more

sophisticated techniques, such as advanced composition the-

orems [36, §3.5] or sparse-vector techniques [80], that would

stretch the budget further and that can be used instead.



4.5 Special cases
We now discuss how Mycelium handles the special cases

excluded in Section 4.3. If a query contains a GROUP BY, the
origin vertex does not just report a single value, but rather

one for each possible combination of values in the grouped

columns. Our homomorphic cryptosystem is designed such

that all of these values can be packed into a single ciphertext.

Only one of these—the one that corresponds to the origin

vertex’s values in the grouped columns—will represent a

non-zero value; the others will be Enc(0). For instance, for
Q6, a 20-year old will report a value of 0 for all categories

outside of the 18–25 category. Because the parameters of

Mycelium support large ciphertexts (§5), it can support a

fairly large range of possible values in the grouped columns.

If a query compares fields from self and dest columns,

Mycelium does the following. Suppose the comparison is

a clause self.x>dest.y, and the predicate also contains

a BETWEEN clause that limits the values of column y to a

discrete range [a, b]. Then, rather than sending back a single

ciphertext Enc(xm), where m is the value in the y column,

the destination vertex reports a sequence of ciphertexts, one
for each value in [a, b], with Enc(xm) in the position corre-

sponding to m, and Enc(1) in all other positions.

During final processing, the origin vertex sums up the

subsequence of size ℓ that corresponds to values greater than
the value of self.x, and then subtracts Enc(ℓ − 1) from the

sum. This means that the final summed value will be Enc(1)
if the destination vertex reported no value (or one outside of

the subsequence). Otherwise, the final value will be exactly

Enc(xm). This allows for correct multiplication with the other

neighbors’ ciphertexts. For example, for a subsequence of

length 3, if the neighbor sent Enc(1), Enc(xm), and Enc(1),
the origin vertex will add the ciphertexts received from the

neighbor to get Enc(2 + xm), and then subtract Enc(3 − 1) =

Enc(2) from it to get Enc(2 + xm) − Enc(2) = Enc(xm).

4.6 Malicious nodes
The above protocol returns the correct result if all of the

nodes in a device’s k-hop neighborhood are correct. But

what if some of them are Byzantine? A Byzantine node may

not follow the protocol and instead return ciphertexts with

coefficients larger than 1, or with more than one nonzero

coefficient; the result could be that the aggregator receives a

value larger than B. Even if a device itself is correct, it cannot

prevent this because it cannot tell what it is computing.

We use zero-knowledge proofs (ZKP) [44] to prevent this

attack. When a node sends a ciphertext to its parent, we

say that the ciphertext is well-formed if it is computed as

described above. Each node sends a ZKP to prove to the

aggregator that its ciphertext is well-formed. Additionally,

each origin vertex sends a ZKP to the aggregator proving that

it computed the local aggregation of its k hop neighborhood

correctly by multiplying the ciphertexts from its neighbors.

If the ZKP requires a trusted setup (such as Groth16 [47],

which we use in our prototype), this setup is performed by

the genesis committee (§4.2). There are also alternatives that

do not require a trusted setup called transparent zkSNARKs.

4.7 Security analysis
Output privacy. By construction, all queries in our lan-

guage have bounded sensitivity, and this bound can be stati-

cally determined by multiplying the maximum value contri-

bution of any one device by the total number of devices in

their local neighborhood. For GSUM terms, the max contribu-

tion is simply the size of the clipping range; for HISTO terms,

it is always two because, by changing its local contribution,

a vertex can at most decrease the count in one bin by 1 and

increase the count in another, also by 1. Thus, we can simply

use the Laplace mechanism to achieve differential privacy.

Neighbor data privacy. The message flow is independent

of a vertex’s private data—in the aggregation phase, each

vertex sends back Enc(0) if the WHERE predicate evaluates to

false—and all the values are encrypted with HE, under a key

that neither the aggregator nor individual nodes know.

Topology privacy. The flooding phase reveals to each node

(a) the size of its k-hop neighborhood (which is equal to the

number of distinct query IDs that arrive), and (b) the number

of other node(s) within a k-hop radius that can be reached

over more than one directly adjacent edge, and if so, over

which edges (because in that case the same query ID arrives

over each of these edges). Other than that, the nodes learn

nothing about the topology: they only communicate with

their direct neighbors, and the values in the messages they

receive have already been aggregated by the neighbors.

Malicious nodes. If a given k-hop neighborhood contains

some malicious nodes, these nodes can report incorrect par-

tial sums for their own subtrees of the spanning tree, by

encrypting any plausible value (from within 0..B · (d + 1)ℓ ,
where ℓ is their level in the tree) and computing a matching

ZKP, or simply by refusing to send a message to their parent

in the tree. However, they cannot cause the aggregator to

accept a vector with more than one non-zero coefficient or a

vector where the value of the non-zero coefficient is greater

than 1 because the aggregator verifies these properties using

the ZKP and discards data from nodes whose ZKP is invalid.

Thus, a small number of malicious devices cannot have a

disproportionate impact on the overall result. We note that

discarding invalid inputs introduces a bias towards the data

from correct nodes, but (a) the effect should be small, due

to the MC assumption, and (b) it seems hard to avoid since

there is no way to tell what the correct input of a malicious

client would have been.

Traffic analysis. Some mixnets, such as Tor, are vulnerable

to traffic analysis attacks such as intersection and disclosure

attacks [7, 27, 79], in which the adversary observes the traf-

fic in the entire network over some time frame and then

makes inferences about whether or not certain participants



are communicating. These attacks leverage the fact that mix

networks are often sparse—that is, only a fraction of par-

ticipants communicate in any one stage of the protocol. In

Mycelium, every device participates in every mixnet stage,

which renders these types of passive attacks infeasible.

4.8 Limitations
One obvious limitation of our approach is that there are use-

ful queries that cannot be expressed in our query language.

This is not a fundamental limitation—with HE and our com-

munication mechanism from Section 3, it should be possible

to execute any Pregel-like query, as long as the HE scheme

supports enough multiplications and the cost of the addi-

tional communication rounds is acceptable. The key question

is how one would prove differential privacy. Perhaps a query

language such as Fuzz [49] or Duet [70], or even manual

privacy proofs using apRHL [8] or CertiPriv [13] could help.

5 Implementation
For our prototype, we used Orchard’s codebase [81] with

three changes: we (1) replaced Orchard’s HE scheme with

BGV [20], which required reimplementing the MPC for de-

cryption; (2) implemented a mechanism for adding Laplace

noise in the MPC for decryption; and (3) replaced the ZKPs in

Orchard with those of Section 4.6. We implemented our mix

network from Section 3 in C++ using OpenSSL [3] for basic

operations (e.g., encryption and decryption). We instantiated

PEnc using RSA-PKCS1 public key encryption, SEnc using

ChaCha20, and AE using ChaCha20-Poly1305 (nonce is not

included in the message). For redistribution of the secret

key (§4.3), we implemented Extended VSR [46].

Security parameters. For BGV, we set the plaintext mod-

ulus to 2
30
, the ciphertext modulus to a 550-bit prime, and

polynomial degree N to 32768. This set of parameters gives

over 128 bits of security [9]) and supports 1-hop queries on

over a billion users by encoding values of up to 30 bits.

To reduce computation costs on devices, we defer the relin-

earization for each multiplication to the global aggregation

phase, where the aggregator performs a one-time operation

to reduce ciphertext size before the decryption step.

MPC and secret sharing. We implemented MPC opera-

tions using version 1.7 of SCALE-MAMBA [53], which pro-

vides security against up to ⌊ k−1
2
⌋ malicious parties, and

performs operations in a finite field modulo a configurable

prime p, which helps us support BGV decryption. SCALE-

MAMBA also supports Shamir secret sharing [82]; we share

the secret key among the k committee members such that

any subset of t + 1 members can reconstruct the secret key,

where t ≥ k
2
. At the same time, no t ′ (where t ′ ≤ k/2) dishon-

est nodes can learn anything about the key, and t + 1 honest
nodes can detect any errors introduced by dishonest nodes.

Using the initial setup by the genesis committee (§4.2), the

Number of devices N 1.1 · 109

Onion routing hops k 3

Replicas of each message r 2

Fraction of forwarders f 0.1

Committee size C 10

Degree bound d 10

Figure 4. The parameters we used, unless noted otherwise.

secret key is distributed to the first committee. Every com-

mittee then uses the extended VSR protocol [46] to generate

new shares of the secret key for the subsequent committee.

Zero-knowledge proofs.We use ZoKrates [4], a high-level

language that can be consumed by SNARK compilers to

produce circuits, to express our zkSNARK statements. These

in turn can be used with many proof systems, some of which

do not need a trusted setup. We use bellman [1] as the

proof system, which implements the Groth16 scheme [47].

We implemented the proofs for encryption and ciphertext

multiplication using this toolbox, and benchmarked the costs

for proof size, proving time, and verification time.

6 Evaluation
This section addresses four questions: (1) How many queries

can Mycelium support? (2) what are the major costs, to nor-

mal users, to committee members, and to the aggregator?, (3)

how well does the onion routing protect topology privacy?,

and (4) how well does Mycelium scale?

6.1 Experimental setup
Since we were not able to deploy a system with millions of

nodes, we benchmark the various components separately,

and extrapolate the costs at scale as done in Orchard [81]. For

the client-side and aggregator-side HE benchmarks, we use a

MacBook Pro with a 2GHz quad-core processor and 16GB of

RAM. For our mix net, we run experiments on CloudLab [32]

m510 machines with 8-core 2GHz processors and 64 GB of

RAM; for the MPC benchmarks, we use 15 Amazon EC2

t2.xlarge instances with 16 GB of RAM. Figure 4 summarizes

the parameters we use, unless specified otherwise.

6.2 Generality
Wefirst examined the range of queriesMycelium can support.

There are two reasons why Mycelium might not support a

given query: (1) it is not expressible in the query language

from Section 4, or (2) the HE scheme in our prototype may

not be able to run enough multiplications to process it.

We tried to implement and run each of the queries in Ta-

ble 2. All queries were expressible, and the query expression

is included in the table. This is not surprising because the

queries we found in the medical literature compute simple

statistics, such as the number of patients for which a par-

ticular predicate is true. We were able to run all the queries
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Figure 5. Performance of Mycelium’s communication layer

except Q1. The latter is a two-hop query that would require

d2 = 100 multiplications, which exceeds the noise budget of

the HE scheme we chose. This is not an inherent limitation;

recent HE libraries [5] are close to supporting this number.

This result suggests that Mycelium can already support

many practical queries, which seems encouraging.

6.3 Communication layer
Next, we looked at the performance of Mycelium’s anony-

mous communication layer. Recall that Mycelium onion-

routes each message on r different k-hop paths, and that, at

each hop, each message is mixed with (r ·d)/f messages. The

aggregator can observe (a) the sets of encrypted messages

each forwarder downloads and uploads, and (b) anything

that the colluding forwarders saw.

We first focus on topology privacy. Suppose the adversary

wants to learn whether there is an edge (a, b). It can observe

which messages b downloads at the end, so it can reason

about the set of senders that each message could have come

from. Each honest forwarder increases the size of this set by

r/f—the uploaded message could have been in any of the

messages the same forwarder downloaded earlier. Thus, with

k honest hops, the number of possible senders is roughly

(r/f )k . However, the r replicas of a given message would

have come from the same sender, so in some cases, the ad-

versary can intersect the r sets. However, because there are
more total messages in the system, and the probability of

multiple intercepted messages is relatively low, increasing

r still (on expectation) leads to larger anonymity sets. Fig-

ure 5(a) shows how the expected set size changes with r and
k. For our parameters of r = 2 and k = 3, a malicious fraction

of 0.02 still yields an anonymity set of over 7000 devices.

However, a node can be “unlucky” and choose a path that

consists only of malicious nodes. In this case, the adversary

can identify this exact node as the sender of the message.

Figure 5(b) shows the probability for this case. With our

default setting of k = 3, each query gives the adversary a

chance of p ≈ 10
−4

to identify a given edge.

Another concern is that message might not reach its des-

tination because all r copies are dropped—either on pur-

pose, by malicious forwarders, or by accident if a forwarder

goes offline and does not return by the end of the C-round.

Queries Number of ciphertexts

Q1, Q2, Q4, Q5, Q8 1

Q3, Q6, Q7, Q10 14

Q9 10

Figure 6. Number of ciphertexts sent for each query
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Figure 5(c) shows "goodput," the probability that a given

message is successfully received (without modifications by

adversaries). With r = 2 and a node failure rate of 4% (includ-

ing both malicious nodes and departures), only about one

in 100 messages is lost completely. Queries can handle this

case, e.g., by specifying a default value for missing inputs in

the local aggregation, by counting the number of local ag-

gregations where this (detectable) condition occurs, and/or

by asking the local aggregators to upload a final value only

when all inputs have been received.

A final question is how long forwarding takes. Figure 5(d)

shows the number of C-rounds that are needed for telescop-

ing (k2+2k) and forwarding (2k+2, since each query requires
a message for the query and a message for the response). If

k = 3 and C-rounds are one hour long, then both phases of

a one-hop query will finish in less than a day. (The duration

depends only on the number of hops and not on what specif-

ically the query computes.) This is fine, since Mycelium is

not for real-time queries.

6.4 What is the cost for normal users?
Next, we examined the bandwidth and computation cost of

Mycelium for normal user devices. Each device performs up

to three operations: (1) it prepares its own contributions to

its neighbors’ local aggregations; (2) it potentially acts as a

forwarder during onion routing; and (3) it completes a local

aggregation for its own neighborhood.
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different committee sizes.

The communication costs vary between queries, depend-

ing on how many FHE ciphertexts they require; each one is

around 4.3 MB. Figure 6 shows the number (CN ) of cipher-

texts for each of the queries in Table 2. In the following, we

focus on the cost of a basic query with CN = 1 ciphertext,

such as Q5; for themore complex queries, the communication

costs need to be multiplied by the number of ciphertexts.

Figure 7 shows the communication cost per device. The

figure contains two column families: one for the case where

the device is selected as a forwarder, and one for the case

where it is not. For each case, we vary the number k of hops

during onion routing and the number r of copies that are
sent of each message. The costs are dominated by message

forwarding: each device has to send r · CN · d large FHE

ciphertexts, where CN is the factor from Figure 6, and, when

chosen as a forwarder with probability f , it has to download
and upload (r ·CN · d)/f of these ciphertexts. For our default

parameters from Figure 4 and a simple query with CN = 1,

this works out to 1030 MB for forwarders and 170 MB for

non-forwarders, or around 430MB on expectation, given that

a k · f proportion of participants will serve as forwarders. For

comparison, this is about the cost of sending a four-minute

video attachment from an iPhone.

The computation time per device mainly depends on the

time to perform ciphertext operations, including encryption

and ciphertext multiplication for neighborhood aggregation,

as well as the time to generate the ZKPs. The ciphertext

operations take around 14 minutes in total with our Python

implementation, and the ZKP proof generation takes around

a minute, so the total computation time per device is roughly

15 minutes. We implemented an (unoptimized) version of

BGV in Python for compatibility with the MPC and ZKP soft-

ware, so these costs could be dramatically reduced to make

use of existing HE optimizations. The computation times for

telescoping and message forwarding were negligible, and

the costs did not vary much between different queries.

6.5 What is the cost for committee members?
For each query, a small committee of C user devices is ex-

pected to participate in the decryption MPC using their

shares of the secret key. Our EC2 benchmarks show that,

although Mycelium uses a different cryptosystem, the cost

of this MPC is comparable to Orchard’s: with a committee
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Figure 9. Per-user bandwidth (a) and total computation (b) required

of the aggregator for each query.

of size 10, the total computation time needed was around

3minutes and the bandwidth required per member is around

4.5GB, plus the (negligible) bandwidth for resharing the

secret key. With millions of devices, an individual user’s

chances of having to serve on a ten-member committee are

very small; nevertheless, due to the high bandwidth, it may

be best to rely on desktops or laptops where possible.

Figure 8 allows us to reason about the tradeoffs associated

with using different committee sizes: a higher committee size

providesmore security over time (because a larger committee

is less likely to contain a majority of malicious members), but

also increases the bandwidth and computation time required.

Figure 8(a) shows the probability that malicious committee

members could reconstruct the secret key, thus causing a

privacy failure. In this case, a new trusted setup must con-

struct a new secret key. Figure 8(b) shows the probability

of enough committee members being present to decrypt. If

there aren’t enough members, we simply have to wait until

enough are back, and retry the computation.

6.6 What are the costs to the aggregator?
Recall that all messages are sent through the aggregator, who

maintains mailboxes for each device. Figure 9(a) shows the

total amount of traffic the aggregator would need to send

to each device, depending on the number of onion-routing

hops k and number of replicas per message r . As expected,
there is a substantial amount: for our choice of k = 3 and

r = 2, the aggregator would need about 350MB per device,

or roughly the size of a 10-minute 1080p YouTube video.

The aggregator also needs to verify the ZKPs of each user

and perform a global aggregation of ciphertexts. Figure 9(b)

shows the number of cores needed to finish the computation

within 10 hours with different system sizes. The cost is dom-

inated by the ZKP verification (the bars for the aggregation

are very small). Although zkSNARKs normally have small,

constant proof sizes, the scheme we use (Groth16) scales lin-

early in the public I/O size, which, in our case, includes the

fairly large ciphertexts. If necessary, the aggregator could

reduce this cost by spot-checking only a fraction of the ZKPs,

or it could stretch the computation over a longer time.



7 Discussion
Cost: It is clear that Mycelium’s privacy comes at a high

cost—queries on non-sensitive data could be answered cheaply

by simply uploading the data to the aggregator in the clear

and using a traditional graph-processing system such as

GraphX [45]. Indeed, we implemented Q1 for a 1-hop neigh-

borhood in GraphX and ran it on a CloudLab machine with a

random billion-node graph and random data. The query fin-

ished in about 5 seconds. Mycelium is meant for queries on

highly sensitive data that would make the aggregator a target

for attacks if it were collected in the clear, and queries that

cannot even be asked today because no single aggregator

can be trusted with the necessary data.

Device heterogeneity: In a practical deployment, one chal-

lenge would be the wide range of device capabilities. Serving

as a communication hop or committeemember seems fine for

a laptop or workstation that is connected to a wired network,

but could be problematic for a mobile phone with a metered

cellular connection and limited battery capacity. However,

we note that mobile devices are increasingly part of device

federations (e.g., a laptop, mobile phone, and smartwatch

all sharing the same iCloud account).Since the devices in a

federation are typically owned by the same individual, they

could safely share their data and designate the most powerful

device—say, the laptop—as a participant in Mycelium.

Communication steps could also be delayed when a device

is on the road, and resumed when it is plugged in and on

a WiFi connection. Finally, hops and committee member

selection could be biased towards more powerful devices;

this would give the adversary a small advantage, since all of

its confederates could claim to be powerful, but one could use

slightly more aggressive parameter settings to compensate.

Aggregator workload: For the aggregator, the major costs

are communication bandwidth and ZKP verification. Much

of the bandwidth is due to the very large HE ciphertexts

(4.3 MB), but we speculate that future HE schemes will even-

tually reduce this cost. For ZKP verification, we note that

the 10-hour limit for Figure 9(b) was somewhat arbitrary; in

practice, ZKP verification could be done in the background,

whenever a data center has spare capacity, as long as the

query results are not needed immediately.

8 Related Work
Private analytics. There is considerable work on differen-

tial privacy [35], some of which considers aggregating data

from multiple domains [41]. However, most target relational

data: PDDP [23] builds histograms and DJoin [69] computes

database joins. Neither is sufficient to answer graph-based

queries. DStress [74] can handle graph data, but does not

scale beyond thousands of users. Of the systems that work at

scale, including academic works [42, 80, 81], and deployed so-

lutions [11, 15, 17, 19, 25, 30, 38, 39, 76], none handle graphs.

Traditional graphprocessing.Graph analytic frameworks

[24, 29, 43, 45, 51, 57, 64, 71, 72, 86, 91] target scale but

not privacy. Work on social networks has dealt with is-

sues of anonymity [12, 40, 89, 90], but the proposed mech-

anisms either focus on answering limited differentially pri-

vate queries [18], on aggregate network estimations that

may hide effects of individual malicious nodes [50], or on

previous definitions of privacy like k-anonymity [60].

Private contact tracing. Work in contact tracing does not

support a single aggregator, or is not designed for central an-

alytics. Mazloom and Gordon [66] support Pregel-like graph

queries but require two servers to split trust between them,

and does not guarantee differential privacy. Poirot [88] gives

differentially private contact summary aggregation, but also

splits trust amongst multiple servers, which perform a joint

MPC. In the last year we have also seen the design of several

other exposure notification and proximity detection systems

that give user-level insights [2, 21, 83]. These insights include

notifying individuals when they are likely to have been ex-

posed to an infection, but do not support graph analytics.

Anonymousmessaging.Mycelium’s messaging layer is in-

spired by Tor [31]. However, Myceliummust operate without

the equivalent of Tor relays, and since the devices themselves

cannot necessarily communicate directly with each other,

it has no choice but to relay communication through the

aggregator, which is a global, active adversary. Mycelium’s

messaging can be seen as a different mix network architec-

ture [10, 22, 26, 54–56, 59, 67, 77, 84, 85] that has high latency

and prioritizes privacy over availability, but that has the ben-

efit of not requiring prior pairwise sharing of cryptographic

material between senders and the chosen mixes, and bal-

ances the load across different sets of mixes every run of the

protocol, which helps the system scale to billions of users.

9 Conclusion
Mycelium is the first system to support differentially private

analytics on graph queries at a massive scale. It leverages

HE, a new mix-network, and Pregel-style queries on top of

a Honeycrisp-like architecture. Because ciphertexts must

support aggregation of up to a billion devices’ information,

the costs of Mycelium are higher than similar FA systems.

Future work may incorporate cryptographic advances that

improve these costs while supporting richer graph queries.
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