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Abstract

The Internet is producing a wealth of data about its own
operation, in the form of NetFlow records, routing ta-
ble entries, traffic statistics, etc. Several previous works
— including, for instance, Clark’s “knowledge plane” —
have considered the idea of building a giant distributed
database that (at least conceptually) contains all of this
information. Such a database could have many attractive
uses, including distributed troubleshooting, attack miti-
gation, or traffic management. However, so far the idea
has not been realized, and it is likely that privacy con-
cerns have played a role.

In this paper, we ask whether differential privacy could
provide the strong privacy guarantees that would be
needed to put this idea into practice. We discuss some
key concerns that have been raised about differential pri-
vacy, such as its limited scalability and its finite “pri-
vacy budget”, and we point out several characteristics of
the Internet that could mitigate these concerns. We also
sketch the design of PRISM, a system for differentially
private queries on NetFlow records that could form the
basis of a potential “knowledge plane”.

1 Introduction

The proposal to create a “knowledge plane” for the Inter-
net has been around for almost a decade — it goes back to
a paper by Clark et al. [24] — and the network is produc-
ing a wealth of data that could be used for this purpose,
e.g., in the form of NetFlow records, routing tables, or
data from a variety of active and passive measurement
systems [43, 44, 37]. Numerous papers have shown the
advantages of a collaborative analysis, which could rely
on a “global view” of the Internet instead of merely data
that each network collects locally; also, a variety of po-
tential applications have been suggested, including col-
laborative network measurement [58, 60, 59], distributed
troubleshooting [17, 16], forecasting [9], cooperative in-
trusion detection [70], botnet analysis [56, 10], and many
others (e.g., [66]).
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However, despite the wealth of data and the many pos-
sible applications, such a “knowledge plane” has not yet
become a reality. We postulate that this is, at least in part,
due to privacy concerns. As recent events have shown,
seemingly innocent metadata, such as IP addresses, can
be used to infer very personal information. Consider,
for instance, the example of Paula Broadwell and for-
mer CIA director David Petracus [64]: even though the
two used an anonymous email account to communicate,
Broadwell was eventually tracked down by the FBI by
correlating the IP addresses she had logged in from with
the hotels at which she had been staying. Other well-
publicized cases, such as the Netflix prize [12] and the
AQOL search data [11], have demonstrated that even a
good-faith effort to protect privacy, e.g., by anonymiz-
ing or “scrubbing” data before release, cannot reliably
prevent a privacy disaster. Thus, it is not surprising that
ISPs are reluctant to make data available, or sometimes
even attempt to deliberately hide information [39, 7, 25].

In this paper, we ask whether differential privacy [29]
could be the enabling technology for an Internet knowl-
edge plane. Differential privacy is one of the strongest
forms of privacy available; it essentially promises to each
individual 7 that, when a query is answered about the
data, the answer would have been almost as likely if
I’s data had not been included. Thus, differential pri-
vacy is very well suited for releasing large trends in the
data (such as the high-level traffic flow across a net-
work) while effectively protecting the privacy of individ-
uals. Most importantly, differential privacy rests on solid
mathematical foundations: it can be formally proven that
accidental privacy leaks, like the ones experienced by
Netflix and AOL, are impossible — even under very pes-
simistic assumptions.

We discuss several common concerns about differen-
tial privacy, and we examine whether they would apply
to a possible knowledge plane. For instance, differen-
tial privacy is often discussed in terms of a centralized
database that contains all the private information (which,
in the Internet, would be a privacy nightmare in itself!),



and it has the concept of a finite “privacy budget” that
must be charged for the “privacy cost” of queries and
that, once exhausted, prevents further queries forever.
We find that it should be possible to address these con-
cerns: briefly, the centralized database could be replaced
by a network of ISP-local databases that answer queries
using a distributed cryptographic protocol, and the bud-
get, while certainly finite, is enormous and could prob-
ably be replenished slowly over time; thus, it may be
possible to keep answering queries indefinitely, without
jeopardizing privacy.

We also sketch the design of a system called PRISM
that enables Private Retrieval of the Internet’s Sensitive
Metadata. Unlike its namesake that has received so much
media attention [5], PRISM would allow access to data
only with very strict differential privacy guarantees. For
concreteness, we discuss PRISM in the context of Net-
Flow data, but we hypothesize that it could be extended
to other types of data that exists on the Internet, such as
routing tables or access logs.

Differential privacy is not a magic bullet — there are in-
teresting and useful queries that cannot be answered with
such strong privacy guarantees. For instance, we might
legitimately want to identify the command node of a bot-
net, or to obtain a list of nodes that are infected by a par-
ticular type of malware. These queries identify specific
individuals, which is the very thing differential privacy is
designed to prevent! However, PRISM does not have to
be the only way that queries can be answered — human
administrators can still approve and answer any query
they wish, just as it is done today. PRISM would add
a way to answer certain “safe” queries automatically, in
cases where very strong privacy assurances can be given.
Thus, PRISM could enable ISPs to safely obtain at least
some of the potential benefits that have been suggested
for a knowledge plane.

2 Overview

In this section, we briefly review the key definitions of
differential privacy, and then sketch a possible architec-
ture for the PRISM system.

2.1 Background: Differential privacy

Differential privacy [29] is a property of randomized
queries that take a database as input and return a re-
sult that is typically some form of aggregate (e.g., a his-
togram, or a count of items that have some property of
interest). The database is viewed as a collection of rows,
and each row contains data about one individual. Intu-
itively, differential privacy promises that each row has
only a very small impact on the overall result of the
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Figure 1: Proposed architecture of PRISM. Each ISP op-
erates a node that has access to its local data and partic-
ipates in a distributed query protocol. The private data
itself never leaves the ISP.

query. More formally, a query g (with range R) is &-
differentially private if, for all databases B and B’ that
differ in at most one row, and for all possible outputs
SCR,

Prig(B) € S] < &° - Prg(B') € §] (1)

In other words, if we add or remove a single individual’s
data, the probability that the (randomized) output will
fall into some set S can change by at most a factor of e°.
Here, € is a privacy parameter; smaller values of € yield
stronger privacy.

If ¢ is a numerical query — say, a count — a common
way to achieve differential privacy is to use the Laplace
mechanism [30]. Suppose g is the precise query (with-
out the noise). Then the Laplace mechanism first com-
putes the precise result g(B), based on the data in the
database B, and then adds noise from a Laplace distribu-
tion —i.e., returns ¢(B) := §(B) +Lap(A). The parameter
A of the Laplace distribution, which controls the amount
of noise that is to be added, depends on the sensitivity of
the query: If |G(B) — g(B’) | < s for any pair of databases
B, B’ that differ in at most one row, then the sensitivity of
G is s, and the parameter A is chosen to be A = s/€.

When ¢ is a non-numerical query — e.g., one that re-
turns elements from a set, such as AS numbers — the
Laplace mechanism is not appropriate. However, there
are other mechanisms that can answer such queries, e.g.,
the exponential mechanism [48].

2.2 PRISM architecture

In order to serve as a useful “knowledge plane”, we
would like PRISM to have access to as much data as pos-
sible, including sensitive data — such as NetFlow records
— that would not normally be available for querying. At



the same time, we insist on strong, provable privacy guar-
antees for the individuals (the ISPs’ customers) whose
data is accessed through PRISM. We obviously cannot
prevent ISPs from accessing their own local data, but we
can ensure that the sensitive data never leaves the ISP that
collected it, except through differentially private queries.

Figure 1 shows a proposed architecture that achieves
these goals. Each ISP operates a local PRISM node that
is given unrestricted access to local information; how-
ever, the PRISM node (unlike its namesake) only an-
swers queries that it can certify as differentially private,
e.g., through static analysis [33]. Only other ISPs are au-
thorized to ask queries, and each PRISM node maintains
a “privacy budget” to limit the amount of private infor-
mation that is revealed as more and more queries are an-
swered over time. In Section 4, we discuss the privacy
budget in more detail.

Not all queries can be answered by querying ISPs indi-
vidually; for instance, to reveal a botnet’s command-and-
control structure, it may be necessary to combine data
from several ISPs [56]. PRISM can support queries that
join data from multiple ISPs, and it can answer them us-
ing a secure, distributed query processing protocol, such
as DJoin [52]. Even in this case, private data does not
have to leave the network of the ISP that collected it:
DJoin uses cryptographic techniques such as private set
intersection [45, 31] to ensure that only differentially pri-
vate results can be observed outside of its domain.

3 Case study: NetFlow

We hope that many different types of data will even-
tually be available through PRISM; however, for con-
creteness, we focus on NetFlow records for the purposes
of this paper. Cisco’s NetFlow [23] and its variants
(e.g., Sampled NetFlow [6], IPFIX [15]) provide a well-
standardized solution for collecting flow-level measure-
ments, and they are already widely supported by many
vendors [4]. They comprise an important data source
both for research [53, 41] and for industrial innovations
[2, 3]. In fact, sharing NetFlow traces has already been
proposed [8], but without differential privacy guarantees.

In this context, PRISM would provide the abstraction
of a global database that contains NetFlow records from
the entire Internet. The “rows” of this database would
contain the flows to and from a specific IP address. (Re-
call from Section 2.1 that differential privacy protects the
privacy of rows.) While we would ideally like the rows to
have all the data that pertain to a specific individual, this
seems impractical because there is no way to tell which
individual(s) caused a given packet to be sent. IPs seem
like a reasonable approximation. In other words, PRISM
aims to answer queries on NetFlow data without reveal-
ing too much about which IPs fit the query criteria.

3.1 Example queries

For concreteness, we now give a few examples of queries
that PRISM might support.

Easy queries: The “easiest” queries for PRISM are que-
ries that can be broken into subqueries, such that each
subquery can be answered by an individual ISP. This in-
cludes common queries, e.g., counts, that serve as a basis
for many advanced analyses [21]: spikes in the number
of flows, e.g., may indicate port scanning, flash crowds,
etc [40]. A query might ask PRISM to count the number
of flows exceeding a certain size, e.g., containing more
than 100 packets and lasting for more than 60 seconds
[50], because extreme counts may trigger a subsequent
DDoS detection. In an SQL-like syntax, the query could
be written as follows:

SELECT COUNT (f.id) FROM ISP 1-N
WHERE (f.pkts>100 AND f.duration>60)

A variety of techniques have been proposed that could
answer such queries, including [21, 55]; similar tech-
niques are available for querying, e.g., histograms [21] or
aggregate time-series [63]. If some of these techniques
are included in PRISM, answering queries such as the
example above is clearly feasible.

Harder queries: If a query cannot be broken into per-
ISP subqueries, it is more difficult for PRISM to answer,
but by no means impossible. For instance, a querier
might try to trace attack flows back to their source using
a sequence of cross-domain joins; thus, we could gain a
backtrace capability without a specialized infrastructure
for that purpose, such as [42]. For instance, a querier
could expose the source ASes of spoofed traffic in the
entire Internet by checking whether a flow’s source IP
address is contained in the ISP it originates from:

SELECT f.SrcASN
FROM JOIN Internet BY FlowID
WHERE (f.SrcIP ¢ f£.0rigISP)

Or, we could change the WHERE predicate to obtain the
source ASes of all traffic ending in darknets [68]:

WHERE (f.DstIP is unallocated)

PRISM could rely on DJoin [52] for answering queries
like this. Since the answer in this case is a set and not a
number, the Laplace mechanism is not appropriate (nois-
ing an AS number does not make sense), but PRISM
could use the exponential mechanism [48] instead. So
queries of this type are more difficult (and potentially
more computationally expensive) but still seem feasible.
Hard queries: There is no doubt that there are some
interesting queries that we currently do not know how
to answer efficiently. For instance, we might want to
use a “similarity join” query [19], which joins databases



by key similarity instead of exact match. For example,
a similarity join based on the similarity of flow on/off
patterns could allow queriers to find correlated Internet
flows, which could help to expose stepping stones [71].
Right now, we do not know how to support similarity
joins, but, as research progresses, PRISM could be ex-
tended with more advanced query processing techniques.

4 The Privacy Budget

A common concern about differential privacy is that it
can only answer a finite number of queries. In this sec-
tion, we examine how severe this concern would be in
the context of an Internet knowledge plane.

4.1 The problem

Recall the guarantee from Section 2.1: if an &-
differentially private query is answered for a database
that includes data about an individual 7, then any bad (or
good) outcome for I becomes at most ¢ more (or less)
likely. € is a tunable parameter that controls the strength
of the privacy guarantee: smaller values of € mean more
privacy. [34] also offers an economic interpretation of €
values.

Of course, in practice we would like to ask more than
one query. This is possible because differential pri-
vacy is compositional: answering two queries that are
€1 and & -differentially private, respectively, is no worse
than answering a single (&) + &)-differentially private
query [46]. In essence, we can think of the parameter
€ as a privacy budget: we negotiate once with the users
what setting of € they feel comfortable with, and we can
then answer an arbitrary set of g-differentially private
queries, as long as } ;& < €.

But what happens if the privacy budget is exhausted?
In this case, PRISM would have to (forever) stop answer-
ing queries! However, we could avoid this undesirable
outcome if a) the budget is very large, or b) there is a
way to replenish the budget. We discuss each in turn.

4.2 How soon would the budget run out?

To estimate how many queries PRISM could answer, we
use a simple model that was proposed in [52]. Suppose
our privacy budget is € and we would like to answer
queries with sensitivity s using the Laplace mechanism,
such that the noised answer is within =FE of the true an-
swer with probability ¢. Then we can answer

N— e-E
- —2-s5-In(1—¢)

queries. The value of &€ depends on the users’ prefer-
ences, but € = 1 has been suggested in [21, 49, 47].

Size helps: The first factor that works in favor of PRISM
is that the Internet is very big — and differential privacy
works best for large amounts of data. For concreteness,
let us assume that PRISM is typically asked counting
queries (s = 1) about IP addresses, of which there are
4-10°. If a typical true answer is around 4 - 107, and
we would like the noisy answer to be within 10% of
that with confidence ¢ = 95%, we can ask N = 667,616
queries — more than half a million! This is a lot, but, of
course, there are also approximately 60,000 ASes, many
of which would want to answer queries fairly regularly.
Based on this calculation alone, each AS could only ask
ten queries, which seems discouraging. But there are
other factors that work in PRISM’s favor.

Sampling helps: Another favorable fact is that, due to
the enormous amount of data, it is often necessary to use
sampling for scalability. For instance, the NetFlow func-
tionality is often configured to sample flows or packets
in a 1-in-N fashion. This helps with privacy, too: it is
known [36] that, when sampling the data with a factor
B (say, 1%), the privacy cost of the queries can also be
scaled by f3, since the data of each individual contributes
to only one in 1/ samples on expectation. If we as-
sume that NetFlow sampling uses a rate of § = 1%, we
can immediately scale the privacy budget by a factor of
1/B = 100 and arrive at 1,000 queries per AS. Sam-
pling inevitably introduces imprecision, but estimating
the statistics of a larger population with its subsamples is
a well-studied topic.

If sampling is additionally applied to the NetFlow re-

cords themselves, we can further boost € at the expense
of some additional imprecision in the result (see also
Section 5.2). For instance, the US census bureau uses a
1% Public Use Microdata Sample [1]. If we assume that
B’ = 1% is reasonable, we can boost the privacy budget
by another factor of 1/’ = 100. (Of course, it must not
be revealed which individuals were sampled for which
query; in practice, this could be implemented with a se-
cure coin toss and a simple multiparty computation cir-
cuit [13].) With this, we arrive at 6.68 - 10° queries, or
roughly 100,000 per AS.
Competition between ISPs helps: Perhaps the biggest
opportunity comes from the fact that differential pri-
vacy makes very pessimistic assumptions about collu-
sion: once a query is answered, the recipient of the an-
swer shares it with everyone. This assumption is pru-
dent in some scenarios, but in the Internet, most ISPs
are business competitors and have conflicting interests,
so it seems unlikely that they would collude on a mas-
sive scale.

In principle, if responses received by one ISP could
never make it to another ISP, we could give each ISP its
own privacy budget of six billion queries. But mistakes
happen, computers get hacked, and some ISPs might in-



deed collude on a small scale, so this is not entirely re-
alistic. But even if each ISP eventually shares its re-
sponses with several other ISPs, it still seems possible
to let each ISP answer several hundred million queries.
Even at 1,000 queries per day, 400 million queries would
last more than 1,000 years — far beyond the likely life-
time of PRISM, or even the Internet.

4.3 Can the budget be replenished?

So far, we have assumed that the budget is set once and
for all, and can never be replenished. This is because
differential privacy conservatively assumes that all the
queries are answered based on the same data; it is de-
signed to protect against a “worst case” in which the en-
tire privacy budget is used to gain information about a
single individual. However, in practice, much of the In-
ternet’s metadata is ephemeral: 40% of the /24-blocks
are dynamically allocated, with a median re-allocation
period of 2.5 hours [18], and most end-to-end Internet
routes change within several hours [27]. Since the Inter-
net’s old metadata are being constantly replaced by new
entries, we expect that its underlying databases will even-
tually be entirely new.

This high level of churn also applies at other levels.
At the flow level, a GEANT router receives roughly 107
new flow records per second [26], and this is at a sam-
pling rate of 1/1000. Previous studies also found that
flows expire quickly ([14] reports that 45% flows ex-
pire within two seconds, and 98% within 15 minutes),
and that longer flows are more likely to be computer-to-
computer protocols that do not involve end users [54],
which are presumably not as sensitive. At the user level,
the IP-to-user mapping also changes over time, as users
change ISPs or move to a different workplace.

Since PRISM’s database is thus likely to be in con-
stant flux, it does not seem unreasonable to replenish the
privacy budget once in a while. Very conservatively, we
could replenish the budget once every 100 years, since
the database almost certainly contains different individ-
uals by then; based on the above calculations, this would
still be enough to answer 10,000 queries per ISP per day,
and faster schedules are probably possible. For practi-
cal reasons, we might opt for a much smaller budget that
is replenished much more frequently — say, a budget of
1,000 queries, with 100 added each day. This would limit
the damage in case an ISP’s PRISM account is compro-
mised and the attacker chooses to burn the entire budget
on a single query.

4.4 Summary

At first glance, it seems that a system like PRISM could
only work for a short time, until its privacy budget is

exhausted. However, due to the Internet’s enormous
size and the low likelihood of massive collusion between
ISPs, the budget could last a very long time, possibly
decades — and, due to the Internet’s high rate of churn, it
would probably be safe to replenish it periodically. In-
deed, the numbers are large enough that, even if some
of our arguments were dismissed, the rest would still be
enough to show that PRISM is feasible.

5 Discussion

In this section, we discuss other questions about PRISM
and a potential “knowledge plane”.

5.1 Could PRISM protect ISP privacy?

So far, our discussion has focused on the privacy of in-
dividuals, which we have taken to mean individual users
who connect to the Internet. However, it is clear that
ISPs, too, are concerned about privacy. For instance, an
ISP might be concerned that, if its topology or traffic ma-
trix were revealed, other ISPs might use this information
to gain a competitive advantage. This concern is fre-
quently discussed in papers on active and passive mea-
surement techniques [65, 59, 60], and there is evidence
that at least some ISPs have taken steps to discourage
probing, e.g., by ICMP rate limiting [65].

If PRISM does not address these concerns, ISPs may
choose to share only data they would publish anyway,
or they may even choose not to participate at all. How-
ever, there is a way to enforce ISP privacy in PRISM:
it can consider other database schemata in which rows
contain the data from entire subnets, PoPs, or even entire
ISPs, and then add noise according to the schema that
is the most restrictive.! It is true that some information
could still be learned, e.g., a very rough traffic matrix —
differential privacy is meant to release large trends like
this! However, high-level information like that can of-
ten be inferred remotely anyway, as systems like Hub-
ble [38], DisCarte [62], etc., have repeatedly shown. In-
deed, these systems typically yield far more specific data
than PRISM ever would.

So, on the one hand, PRISM would substantially
broaden the range of queries that could be asked, and
it might yield data at a higher quality than measurement
systems would, since it operates on the true data, without
heuristics-based inference or measurement errors. But,
on the other hand, ISPs would gain more explicit control
over the information they are sharing (including an op-
tion to audit queries that involve their local node, and to
block queries that are abusing the system).

"Note that we do not actually need multiple databases — it is suffi-
cient to consider the schemata when deciding how much noise to add
to a given query result.



5.2 Would PRISM be accurate enough?

Differential privacy inherently returns imprecise results,
so it is natural to ask how this imprecision would affect
utility. However, dealing with imprecision is a challenge
in almost all quantitative studies. For instance, there is
often too much data to collect, so sampling has to be
used, which introduces sampling error; indeed, sampling
is a built-in part of NetFlow for that very reason [6].
Other sources of error include “gaps” in the data because
of partial deployment or partial visibility, data quality
issues, samples from slightly different points in time,
etc. The effects of this imprecision are well understood,
and there are excellent statistical tools and techniques
that can be used to deal with them, which are standard
practice for measurement studies. In a sense, PRISM’s
“noise” might even be cleaner than that in many mea-
surements today: PRISM would operate on the true data,
so there would be less inaccuracy due to heuristics-based
inferences, data quality issues, or assumptions that do
not hold everywhere. Moreover, PRISM’s “noise” would
be drawn from a well-known distribution, so it would be
easier to reason about its impact on the data.

5.3 What about data quality issues?

Unlike classical measurement studies, PRISM would re-
turn only the final answer (e.g., the average traffic on a
given set of links), but not return intermediate results (the
traffic on the individual links). This would make it harder
to spot problems with the data. For instance, if a router
is misconfigured and reports Exabits of traffic per sec-
ond, the overall result will be completely implausible,
but there will not be an easy way to identify the problem.

One way to address this problem would be to en-
code the quality-checking in the query itself. In Sec-
tion 3.1, we have used a simple SQL-like syntax, but
there are far more sophisticated query languages for dif-
ferentially private data analysis, including higher-order
languages [57]. Recall that the query has access to the
true, un-noised data while it is being processed, so it can
perform plausibility checks and data cleaning internally;
if a problem with a particular row of data is too severe,
the query might return a default value for that row. To
assess the quality of the data, a second query could be
issued to count the number of problematic rows.

Since PRISM would be operated by ISPs, intentional
tampering with the results does not seem very likely.
Nevertheless, we note that there are ways to address this
if it should become an issue, e.g., by (privately) enforc-
ing upper and lower bounds on the data each ISP can re-
turn, analogous to PDDP [21]. Another possibility would
be to enforce differential privacy in a verifiable manner,
similar with VerDP [51].

5.4 How well does query processing scale?

In principle, PRISM could be used to run queries across
the entire Internet; however, we expect that, in practice,
many queries will involve only a small number of ISPs.
For example, [22] says that results from four domains
are sufficient to detect DDoS with 98% accuracy; another
study [16] only used data from a network’s 17 customers.

Whether a query can scale depends on the operators
it contains. If a query can be broken into per-ISP sub-
queries, the subqueries can be processed in parallel, and
the final aggregation step is fairly easy. If joins are in-
volved, more expensive cryptographic techniques like
private set intersection [31, 52] will probably need to be
used, and these do not yet scale too well. However, this
is an active and fairly young field of research, so PRISM
could benefit from new discoveries over time. For exam-
ple, SEPIA [45] was able to intersect sets from 25 players
with one million elements in slightly more than 1 minute;
this seems like a practical scale for at least some queries.

5.5 Would a partial deployment work?

Like many other systems, PRISM would initially face a
chicken-and-egg problem because its utility depends in
part on the amount of data that is available for querying.
Nevertheless, the situation is not as dire as, e.g., in S-
BGP: even a small deployment of two or three large ISPs
could initially be useful, e.g., to privately find ways to
optimize traffic between them, or to privately track down
attacks. Other ISPs would have an incentive to join be-
cause this would give them the ability to ask queries of
their own.

Despite all this, it would be naive to expect a full de-
ployment, or that all PRISM nodes are always available.
This should not be a problem for most queries, however:
if a query is limited to a moderate set of ASes, it can
be answered by the PRISM nodes in these ASes, with-
out involving the others; sampling-based queries could
be run using samples from other ISPs that are currently
available. Global queries, or queries that require a truly
unbiased sample, could be processed in stages.

Some queries might return a biased answer if they are
answered based on data from a subset of ISPs. However,
working with partial data is a familiar problem for many
administrators (e.g., from working with Internet look-
ing glasses) and researchers doing measurement stud-
ies. Moreover, the set of ISPs that operate PRISM nodes
could probably be made public, just as the set of Route-
Views nodes and looking glasses is public; this should
help with query design.



6 Related Work

Analyzing the Internet’s sensitive metadata with privacy
guarantees has been used for distributed troubleshoot-
ing [17, 16], measurement [58, 60, 59, 28], forecasting
[9], route computation [32], and private alerts correla-
tion [70]. There has also been initial attempts to apply
differential privacy [29] — the strongest privacy model —
to centralized [51, 47, 46] and distributed [52, 21] data
sources. Our work puts differential privacy in the context
of forming an Internet knowledge plane, and explores a
common concern whether differential privacy’s limited
budget restricts its practicality [33, 56, 21, 20].

Creating a “knowledge plane” for the Internet is a
longstanding proposal [24]. Many existing papers ad-
vance this goal by, e.g., measuring [43, 44] or predict-
ing [44] Internet performance, developing an Internet-
scale query processor [35], a scalable distributed infor-
mation management system [69], a framework for In-
ternet forensics [61], or a declarative programming en-
vironment [67]. In contrast, our work focuses less on
a concrete design and more on providing strong privacy
guarantees, which would be important for any practical
knowledge plane.

7 Conclusions

We have made a case for differential privacy to be a po-
tential basis for realizing the long-standing vision of a
“knowledge plane” for the Internet. We have sketched
the design of a system called PRISM that could serve as
the foundation of such a knowledge plane; and we have
especially focused on a common concern of differential
privacy’s limited budget. PRISM may not be able to sup-
port all queries we might like to ask, but it would cer-
tainly be able to answer a wide range of queries — com-
pletely automatically and, unlike its namesake, with one
of the strongest privacy guarantees available today. Al-
though we have mainly used NetFlow records as exam-
ples, the idea of PRISM should be generalizable to other
types of network data, too.
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