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Abstract
Byzantine Fault Tolerance (BFT) is a classic technique for

defending distributed systems against a wide range of faults

and attacks. However, existing solutions are designed for

systems where nodes can interact only by exchanging mes-

sages. They are not directly applicable to systems where

nodes have sensors and actuators and can also interact in

the physical world – perhaps by blocking each other’s path

or by crashing into each other.

In this paper, we take a first stab at extending BFT to

this larger class of systems. We focus on multi-robot systems
(MRS), an emerging technology that is increasingly being

deployed for applications such as target tracking, warehouse

logistics, and exploration. An MRS can consist of dozens of

interacting robots and is thus a bona-fide distributed system.

The classic masking guarantee is not practical in a MRS, but

we propose a variant called bounded-time interaction that can
be implemented, and we present an algorithm that achieves

it, in combination with a few small hardware tweaks. We

built a simulator and prototyped wheeled robots to show

that our algorithm is effective, and that it has a reasonable

overhead.

CCS Concepts: • Computer systems organization→ Ro-
botics; Dependable and fault-tolerant systems and net-
works; • Security and privacy → Embedded systems
security.
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1 Introduction
A multi-robot system (MRS) is a group of robots that work

towards a common goal, such as performing efficient ware-

house logistics [16, 43, 45, 53], patrolling a certain geographic

area [1, 2, 71, 87], or finding intruders [36, 37, 59]. Robots

typically move independently and coordinate over wireless

messages. MRS are increasingly deployed commercially; for

instance, Ocado is using them in large warehouses, where

they have reduced the worst-case order fulfillment time from

over three hours to less than 15 minutes [74].

As with other distributed systems, a possible concern is

that individual robots could malfunction or be compromised

by an adversary. From a distributed systems perspective, it is

natural to reach for an existing tool from the fault-tolerance

toolbox – say, replicating each robot’s controller using Byzan-

tine Fault Tolerance (BFT). However, BFT does not seem like

a great fit for MRS, for at least two reasons. First, it is not

clear where the replicas should go: they cannot be on the

robot itself, since an adversary might gain physical access to

some robots and compromise all of their replicas simultane-

ously, but they also cannot be on other robots because most

MRS use limited-range wireless transmitters, so the network

topology keeps changing at runtime and does not support

the stringent latency requirements of a typical robot control

loop. If a robot were to lose contact with its “replicas” even

briefly, it could easily crash even without an adversary in

the picture.

A second, more fundamental reason is that the robots

can directly interact with the physical world, so incorrect

behavior is not the only concern: an adversary can use a

compromised robot to cause considerable destruction. For

instance, Ocado’s robots resemble “washing machines on
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wheels” [74] and can move at 8
𝑚
𝑠
[93], so one could imagine

a compromised robot, e.g., knocking over shelves, smashing

products that contain dangerous chemicals, or crashing into

other robots. This risk does not exist in most classical appli-

cation scenarios for, say, BFT: although the replicated system

might certainly control security-critical actuators (say, in a

chemical plant), the replicas themselves are compute nodes

and cannot cause physical destruction on their own.

Although the robotics community has started to explore

MRS-specific security solutions, most of the existing work

has been done in isolation, without much input from the

distributed-systems community. Just like the early solutions

in our area, current MRS defenses tend to focus on specific,

known attacks: for instance, [32, 33, 57, 104] only consider

Sybil attacks and certain types of lying, while [103] focuses

on physical masquerade attacks. There are some consensus

protocols [81–83, 91, 113, 114], but they focus on lying about

the inputs and not on misbehavior during the protocol itself.

We think that it would be useful – and an interesting chal-

lenge! – to translate some of the general solutions from the

distributed-systems literature to this new setting.

This paper is our first step in this direction: we present

RoboRebound, which is, to our knowledge, the first general-

purpose MRS defense for the fully-Byzantine threat model.

RoboRebound is based on two key insights. The first is that

it is critical to define the right goal: although the traditional

fault-tolerance guarantee – fully masking the effects of a

limited number of faults – would be hard to achieve in MRS,

it also does not seem strictly necessary: since the robots have

limited speed, they cannot cause destruction instantly. Thus,

it would already be useful to catch malfunctions reasonably

quickly. For instance, if a robot veers off the safe track to-

wards a shelf or another robot, we can typically prevent

damage as long as the robot can be shut down right away.

We call this property bounded-time interaction (BTI).
At first glance, it seems possible to provide BTI with a so-

lution such as bounded-time recovery (BTR) [28], which can

detect and isolate faulty nodes within milliseconds. However,

BTR assumes that a) it is possible to tell what a node’s inputs

were, and that b) success means getting the other nodes to

stop paying attention to the faulty node. Neither is true in

an MRS: no robot can tell what another robot’s sensors are

showing, and a robot can cause damage simply by control-

ling its own actuators. However, our second key insight is

that two very small and simple pieces of trusted hardware

can solve both problems. The situation is roughly analogous

to TrInc [50], which similarly showed a huge security bene-

fit from an extremely simple piece of trusted hardware – in

TrInc’s case, an increment-only counter.

We have implemented a prototype of RoboRebound (in

simulation) and on a variant of our lab’s mobile-robot plat-

form, SecBot, and we have evaluated it with a combination

of simulations and microbenchmarks, using a standard flock-

ing protocol (Olfati-Saber [68]) as a case study. Our results

Figure 1. Examples of practical MRS: multi-tooled ground

robots, cooperative blimp robots, and a long-exposure shot

of a flying-robot flock. (Images by Jiawei Xu (left [107], mid-

dle [106]) and from [99]; reproduced with permission.)

show that 1) RoboRebound is effective against a variety

of attacks and that it has a reasonable overhead, and 2) the

trusted components can be implemented with just a few

lines of code, on tiny MCUs that cost about €3 a piece. In

summary, our contributions are: (𝑖) the bounded-time inter-

action property (Section 2); (𝑖𝑖) the design of RoboRebound

(Section 3); (𝑖𝑖𝑖) a prototype implementation (Section 4); and

(𝑖𝑣) an experimental evaluation (Section 5).

2 Overview
Since MRS are relatively new to this community, we begin

with a brief overview. The MRS landscape is highly heteroge-

neous: the robots can be wheeled ground robots, swimming

robots, or flying robots, and the system might contain hun-

dreds of them, or just a few. Figure 1 shows three examples.

A common characteristic is that the robots act individually:
each has its own controller, its own array of sensors and

actuators, and its own radio. Many MRS are fully distributed;

action is completely regulated by decentralized communi-

cation. Generally, robots can be programmed with different,

mission-dependent protocols.

The hardware used varies widely; e.g., sensors might in-

clude photodiodes, cameras, GNSS, or gyroscopes [11, 30, 78,

97, 99]. Robots often do have fairly substantial computation

power: for instance, even the small e-puck 2 [30] has a 32-bit

MCU that runs at 60MHz, while the higher-end Starling [97]

has a 64-bit CPU that runs at 2.15GHz. Available RAM ranges

from a few kilobytes [30] to gigabytes [77, 97]; flash mem-

ory is more plentiful, ranging from 144kB to 128MB. MRS

typically rely on a time-varying ad-hoc wireless network for

communication. Data rates range from a few Kbps to tens of

Mbps [44, 97]. Thus, the robots typically do have resources

available for adding a security technique, including some

simple cryptographic operations.

2.1 What do MRS protocols look like?
MRS use cases vary widely, so there are many different coor-

dination protocols. For concreteness, we sketch three com-

mon example applications next.

In Multi-Agent Path Finding (MAPF), each robot has its

own destination; the goal is to generate paths that achieve

efficient, collision-free motion. This can be used in, e.g., ware-

houses [43, 47, 105], service robots [100], and airport surface



Algorithm 1 Flocking Protocol for a Robot 𝑖 , from [68].

Let 𝑔 be an ‘agent’ representing the global rendezvous point

for each control algorithm period do
u𝑖 ← 0 /* Initialize control (acceleration) vector */
/* Factor in attraction/repulsion from nearby robots */
for each neighbor 𝑗 of 𝑖 do

u𝑖 ← u𝑖+ NbrSpring(𝑖 , 𝑗 ) + NbrDamp(𝑖 , 𝑗 )

/* Account for the closest nearby (convex) obstacles */
for each nearest-point on a convex obstacle 𝑘 do

u𝑖 ← u𝑖+ ObsSpring(𝑖 , 𝑘) + ObsDamp(𝑖 , 𝑘)

/* Account for the global ‘goal’ or destination */
u𝑖 ← u𝑖+ SysGoalSpring(𝑖 , 𝑔) + SysGoalDamp(𝑖 , 𝑔)

applyNewAcceleration(u𝑖 )

operations [66]. As with flocking, the robots exchange infor-

mation about their locations and current destinations.

In exploration, the robots need to explore an unknown area
– perhaps to map an unknown building, to locate a radiation

source, or to find people who may need to be rescued – and

they split up the region to cover it more quickly as a group.

They coordinate infrequently to ensure that their subregions

do not overlap, and that no area is missed.

A flocking protocol, such as [68], enables the robots tomove

as a group, towards a common destination. This can be useful,

e.g., for target tracking [57]. Typically, the robots exchange

information about their current positions and about obstacles

to avoid collisions. To make things concrete, Algorithm 1

shows simplified pseudocode for [68]: it resembles a spring-

damper mechanism, in which a robot is attracted or repelled

by the destination, obstacles, and nearby robots. Notice that

each robot’s acceleration vector depends on the state of the

neighbors, which robots exchange over a wireless network.

We will use this algorithm as a case study, but our solution

is general and covers other MRS protocols as well.

2.2 Threat model
We focus on an adversary that can compromise up to 𝑓max
robots, e.g., because they briefly have physical access to the

area where robots are stored, or because they can capture a

few robots during the mission. The adversary can reprogram

these nodes, but we assume that they cannot carry out at-

tacks that would take a lot of time or specialized equipment,

such as altering the hardware or applying sophisticated side-

channel attacks (differential power analysis etc.). Thus, com-
ponents with fixed functionality (e.g., an MCU with a program
in ROM) will operate correctly after the attack, and their se-

crets will remain secret, as long as they do not contain bugs

the adversary can exploit. Notice, however, that this cannot

include the main controller on each robot because, as we

have pointed out in Section 2, this needs to be programmable

to accommodate different missions.

We do not aim for perfect security: one could certainly

imagine stronger adversaries who are able to tamper with the

trusted nodes, given enough time and the right equipment.

For instance, an adversary with a soldering iron and some

(a) No robots compromised (b) 10/125 robots compromised

Figure 2. Effects of a small-scale attack on an MRS that

performs flocking using the Olfati-Saber protocol [68].

extra components could modify or replace a robot’s logic

board, and an adversary with acid and an electron micro-

scope could decap chips and read out their secrets. However,

these invasive attacks seem considerably more difficult than

the ones we are considering.

2.3 What can go wrong?
How might an adversary attack MRS fitting this model? We

observe that MRS protocols have a few common features: 1)

each robot reports some local information, such as its current

position or the presence of an obstacle; 2) this information

is often hard to verify by other robots; and 3) the group

makes decisions based on the aggregate information. Here,

compromised robots could “poison” the overall state, and to

affect the entire MRS (beyond the compromised robots), by

reporting false information and/or by equivocating.

This vulnerability is not unique to flocking – it also exists

in MAPF and exploration, as well as in other MRS applica-

tions. It is also not unique to a specific protocol. Rather, it

is fundamental to MRS protocols, which must control the

actions of the entire group based on information provided

by individual robots. We surveyed 34 protocols from the

MRS literature, and found variants of this vulnerability in

every single protocol we examined. In transportation sys-

tems [12, 15, 48, 66, 72], compromised robots can lead good

robots astray, damaging cargo and increasing operational

cost. In warehouses [16, 24, 43, 45, 47, 52, 53, 85, 95, 105, 109],

compromised robots can delay getting objects to destinations,

block other robots’ paths, or put objects in incorrect places.

In target tracking [35, 98, 115–117], compromised robots

can mislead robots into looking elsewhere while the target

escapes. In perimeter defense [1, 2, 36, 37, 59, 71, 86–88],

compromised robots can open a breach in the perimeter by

lying about incoming adversary positions. In surveillance

and mapping [3, 34, 75, 112], compromised robots can lie

about the objects of surveillance to misinform users or cause

resources to be allocated incorrectly.

2.4 How bad can it get?
To illustrate the potential impact on MRS performance, we

show the effects of an attack in Figure 2. We simulated an

MRS with 125 robots running our example “application”

(flocking, using Olfati-Saber [68]). Robots were to move to



a destination located amidst a grid of obstacles. Figure 2a

shows a snapshot of a no-attack case; as expected, all robots

move around the obstacles as a group to reach the target.

This contrasts with Figure 2b; here, 10 compromised robots

masquerade as other robots and incorrectly report the posi-

tions of the other robots as between a correct robot and the

destination. Correct robots stay away from the destination

to avoid a crashing into the positions of robots forged by

the adversary. Since all robots want to avoid crashes, even

correct robots not communicating with compromised robots

are affected by the misinformed actions of those that the

compromised robots can communicate with.

2.5 Challenges
In traditional distributed systems, a problem like this would

usually be solved by replicating the relevant components, e.g.,

using PBFT [13]. However, as discussed earlier, this approach

is not a good fit for MRS: if the replicas are on the same robot,

an adversary could likely compromise them all, and if they

are on other robots, it would be difficult to maintain the tight

latency requirements of the robots’ control loops. Thus, fault

tolerance is not likely to be a good solution.

Post-hoc fault detection seems more promising: we can let

each robot make latency-sensitive decisions independently,

but then 1) have other robots check that these decisions

were correct, e.g., by auditing [42], and 2) isolate any robots

that have made incorrect decisions. This approach works for

classical distributed systems, where the inputs and outputs

are messages from and to other nodes, but it seems difficult

forMRS, where each robot interacts with its local sensors and

actuators. A compromised robot could evade detection by

reporting inputs that would be consistent with its intended

actions (say, claiming a strong wind from the right if it wants

to move to the left), and/or by reporting to auditors that it

is taking the actions the protocol prescribes, while actually

doing something else. And even if one robot could detect

that another was compromised, it is not clear how the latter

could be isolated from the rest of the system.

However, we observe that fault detection mostly works,

even for MRS: at a high level, all that is missing is a way to

verify some simple statements about each robot’s inputs and

outputs. (As we shall see in a moment, it is a bit more subtle

than this, but not much more!) It is also general and widely

applicable [42]. Thus, it seems possible to get a big security

gain if we are willing to trust a very simple primitive – much

simpler than the entire auditing system, and certainly much

simpler than the entire MRS functionality!

2.6 Our approach
In this paper, we propose just such a primitive, along with

a system, RoboRebound, that leverages it. Specifically, we

add a pair of small, trusted hardware components called

the 𝑠-node and 𝑎-node to each robot, which interpose on

sensor and actuator communication, respectively – hence

the names. Unlike the main control algorithm on the control

node (𝑐-node), which is complex and mutable, the 𝑠- and 𝑎-

node are simple (a few lines of pseudocode) and immutable;

their software is meant to be burned into ROM on cheap

MCUs. Thus, under our threat model, they would survive an

attack, even if the 𝑐-node is compromised.

Once the 𝑠-node and 𝑎-node certify the sensor data and

control vector, robots can perform PeerReview [42]-style

auditing. Each robot logs its inputs and outputs to enable

deterministic replay [19]; other robots download and inspect

this log regularly to check for correctness. If the replay out-

puts match the log-recorded outputs [42], then the robot is

correct; otherwise, it is compromised.

Since a compromised robot may try to evade detection by

ignoring audit requests or by moving out of communication

range, we enforce a timeout mechanism in the 𝑎-node: each 𝑐-

node must periodically obtain tokens, representing successful
audits, from 𝑓max + 1 other 𝑐-nodes, and present them to its

𝑎-node. If the 𝑎-node does not receive enough tokens, it can

put the robot into safe mode by, e.g., triggering a kill switch.

The three key challenges with this approach are 1) keeping

the complexity of the 𝑠- and 𝑎-node low enough to make

them trustworthy, 2) detecting whether a robot has logged

its actions correctly, and 3) deciding whether a given log

represents correct behavior. Section 3 describes how Robo-

Rebound overcomes these challenges.

2.7 Bounded-time interaction
The security property provided by this approach is clearly

weaker than masking. A compromised robot has a small (but

bounded) window of opportunity to misbehave and/or send

incorrect information, until its 𝑎-node times out and disables

it. We call this bounded-time interaction (BTI). Whether BTI

is strong enough depends on the use case. In Olfati-Saber,

it seems sufficient: even if the spring-damper mechanism

is briefly distorted by disinformation from compromised

robots, it will quickly return to its expected state once these

robots have been disabled. In other use cases, BTI’s window

of opportunity could be enough for a compromised robot to

cause lasting damage – e.g., by crashing into a good robot.

But even in such cases, a few extra precautions could help,

such as keeping some distance between the robots.

3 Design
In this section, we propose RoboRebound and explain how

it addresses the challenges from above.

3.1 Additional assumptions
We assume the existence of a cryptographic hash function

𝐻 and a message authentication code MAC with compact,

efficient, trustworthy embedded system implementations.

We do not require public-key cryptography. We assume that
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the robot has a Safe Mode that can be triggered when its con-

troller is compromised or malfunctions. This is a standard

feature in many robots and can range from using a simpler

controller [102] to a kill switch [29] that disconnects the

robot from its actuators. Having a Safe Mode is necessary for

any system that can physically affect its surroundings to safe-

guard against faulty behavior, even in the non-adversarial

case [94]. In fact, in some jurisdictions, safety-critical AI and

robotic systems are even required by regulation to have a

Safe Mode – see, e.g., Article 14(4)(e) of the EU’s AI Act of

2024 [21].

3.2 𝑠-nodes and 𝑎-nodes
As per Section 2.6, RoboRebound requires two small trusted

components on each robot. Figure 3 shows how these compo-

nents are connected. The control node (𝑐-node) of a robot is a
CPU that runs the control algorithm and any other software

the robot would need. Instead of sensor data going directly

to the 𝑐-node, here it goes to the sensor node (𝑠-node) instead,
which forwards the data to the 𝑐-node along with some extra

information (see below). Similarly, instead of the 𝑐-node di-

rectly controlling actuators, commands are relayed through

the actuator node (𝑎-node). The 𝑎-node interposes on all com-

munication with the robot’s radio; it can see, and potentially

drop, all messages the 𝑐-node sends or receives. The elec-

tronics can be wired via a printed circuit board, making it

difficult for an adversary to bypass the trusted nodes, as that

would require (de)soldering wires, which is time-consuming,

noticeable, and requires bulky equipment. Due to the limited

API available to the 𝑐-node and the lack of a wire from the

𝑐-node to reset pins on either trusted node, an adversary

cannot restart the trusted nodes to reset their clocks.

The general 𝑐-node software can be quite complex, so it is

hard to trust; but the 𝑠- and 𝑎-node run very simple proto-

cols, which we assume can be trusted. To ensure that they

cannot be affected by 𝑐-node bugs, they run on small, sepa-

rate processors; e.g., a PIC or an MSP430. The only special

features we need are 1) a local timer, and 2) a way to prevent

reprogramming. The first is standard on most MCUs, and

the second can be done, e.g., on the MSP430, by the “JTAG

fuse” [96, §2.2.4.5].

The 𝑠- and 𝑎-node each implement a small set of functions,

which the 𝑐-node can invoke via an RPC-like message. Pseu-

docode for these functions is in Algorithms 2, 3, and 4. We

will explain each function below. Here, we note that the main

source of complexity is a cryptographic hash and the MAC.

Algorithm 2 Functions shared by 𝑠-nodes and 𝑎-nodes.

flash var robId = 0 // Unique ID for each robot
flash var masKey = 0, keySeq = 0 // Master key (set only once)
var key = 0 // Mission key
var buffer = [], batchCtr = 0 // Buffer for batching commitments
var tHash = 0 // Hash at the top of the hash chain
// Private functions (cannot be invoked by the c-node)
function flushBuffer

tHash← H(tHash || buffer)

(batchCtr,buffer)← (0, [])

function appendToChain(𝑚)

buffer.append(𝑚)

if (++batchCtr) = batchSize then flushBuffer()

// Functions the c-node can invoke
function loadMasterKey(𝑚, 𝑖𝑑)

if masKey = 0 then (masKey, robId)← (𝑚, 𝑖𝑑 )
function loadMissionKey(𝑘, 𝑟, 𝑠, ℎ)

if mac(mkey || k || r || s || masKey) = h and s > keySeq then
(keySeq, key)← (s, 𝑘 ⊕ H(r || masKey))

function makeAuthenticator

if (batchCtr > 0) then flushBuffer()

return (tHash, robId, mac(auth || tHash || robId || key))

Algorithm 3 𝑠-node-specific functions.
function pollSensors

if key = 0 then return
s← sensorInput()

return appendToChain(input || s.len || s)

function checkAuthenticator(h, id, mac)

return mac(auth || h || id || key) = mac

Since the 𝑎-node is between the 𝑐-node and the actuators,

we assume that Safe Mode is implemented here.

3.3 Key distribution
Each 𝑠-node and 𝑎-node has a one-time programmable (with

loadMasterKey) master key that is shared by all the robots

in a given MRS. The MRS owner should keep this key in a

safe place, just like a private signing key. The 𝑎-nodes could

technically use the master key to authenticate each other’s

messages, but then a compromised 𝑐-node might be able to

capture and replay messages at the adversary’s convenience;

e.g., future missions. To prevent this, each 𝑠-node and 𝑎-node

has a separate, in-RAM mission key that is zero at power-up,

and can be set once per mission via loadMissionKey. This

requires a MAC with the master key, so that the adversary

cannot set the mission key arbitrarily if she has compromised

the 𝑐-node; a monotonically increasing sequence number 𝑠 ,

so the adversary cannot use an old mission key intercepted

at a previous power-up; and the message type bit mkey. The

mission key 𝑘 is blinded with a hash of the master key and a

random number 𝑟 . The 𝑎-node only starts forwarding actu-

ator commands once it has received a mission key, so, if a

compromised 𝑐-node withholds the mission key, the robot

will remain disabled and can be spotted easily.



Algorithm 4 𝑎-node-specific functions.
var tkMap = ⊥ /* Active tokens from auditors */
var lastBktUpdate = 0, bktLvl = 0 /* For audit rate-limiting */
function checkTokens /* Runs periodically */

nVal= | {𝑛 ∈ tkMap.keys | tkMap.get(n) ≥ localTimer() − 𝑇𝑣𝑎𝑙 } |
if nVal < 𝑓max + 1 then key← 0; invokeSafeMode()

function recvWireless(𝑚) /* Triggered on packet reception */
if key=0 then return
forwardToCnode(𝑚)

if (m.type ≠ audit then appendToChain(recv ||𝑚.len ||𝑚)

/* Below: Functions the c-node can invoke */
function sendWireless(𝑚)

if key=0 then return
forwardToNIC(𝑚)

if (m.type ≠ audit) then appendToChain(send ||𝑚.len ||𝑚)

function actuatorCmd(𝑚)

if key=0 then return
forwardToActuator(𝑚)

appendToChain(acmd ||𝑚.len ||𝑚)

function makeTokenReqest(dest)

t← localTimer()

bktLvl←min(bucketCapacity, bktLvl+𝜌 ·(t-lastBktUpdate))
bucketLastUpdated← t

if bktLvl < minPerToken then return ⊥
bktLvl← bktLvl - minPerToken

return t, mac(treq || t || robId || dest || key)

/* Shorthands: ‘tor’ = auditor and ‘tee’ = auditee */
function issueToken(tee, 𝑡 ,𝑚𝑎𝑐 , ℎ𝑐𝑘𝑝𝑡 )

if tee ≠ robId and mac(treq||𝑡 ||tee||robId||key) =𝑚𝑎𝑐 then
return mac(token || robId || tee || 𝑡 || ℎ𝑐𝑘𝑝𝑡 || key)

return ⊥
function isTokenValid(tor, 𝑡 , ℎ𝑐𝑘𝑝𝑡 , mac)

return mac(token || tor || robId || 𝑡 || ℎ𝑐𝑘𝑝𝑡 || key) = mac

function installToken(tor, 𝑡 , ℎ𝑐𝑘𝑝𝑡 , mac)

if isTokenValid(tor, 𝑡 , ℎ𝑐𝑘𝑝𝑡 , mac) then tkMap.put(tor, 𝑡 )

Thus, at the beginning of a mission, the 𝑠-nodes and 𝑎-

nodes have a freshly initialized state, including a shared mis-

sion key. Since we have assumed that the adversary cannot

use differential power analysis or similar hardware attacks,

the adversary does not know this key.

3.4 Logging and authenticators
At runtime, each 𝑐-node keeps a local log of its nondeter-

ministic inputs and outputs, such as sensor/actuator data

and wireless messages it sent or received. During an audit

(Section 3.7), this log is made available to other robots, which

can verify it by deterministic replay.

A compromised 𝑐-node may omit, modify, or fabricate

inputs and outputs. To make this detectable, the 𝑠-node and

the𝑎-node eachmaintain a hash chain of the inputs (e.g., state
vectors) and outputs (e.g., motor commands) they forward.

The hash chain starts at ℎ0 := 0 after power-up, and, when

some inputs or outputs 𝑑𝑖 are added as the 𝑖𝑡ℎ entry, the

new top-level hash value becomes ℎ𝑖 := 𝐻 (ℎ𝑖−1 | | 𝑑𝑖 ). Upon
the 𝑐-node’s request, they produce an authenticator for the

top-level hash value; an authenticator 𝛼𝑖 is a tuple 𝛼𝑖 :=

(ℎ𝑖 , 𝑖𝑑,𝑚𝑎𝑐), where ℎ𝑖 is the hash of entry 𝑖 , 𝑖𝑑 is the robot’s

ID, and𝑚𝑎𝑐 is a MAC. Given an authenticator 𝛼 𝑗 , a sequence

of entries 𝑑𝑖 , .., 𝑑 𝑗 , and the hash value ℎ𝑖 for the first entry,

a trusted node can verify the existence and position (i.e.,

ordering w.r.t. other messages) in the chain by recomputing

the hashes.

Since the log is transmitted wirelessly to auditors, the 𝑎-

node cannot naïvely log all outgoing messages; otherwise

the log would grow exponentially. Thus, wireless messages

have a type bit that is set only for audit-related messages.

If a message has this bit set, it is not logged, but the bit is

included in the message, so the recipient will not confuse

the message with a regular message. Hence, a compromised

𝑐-node cannot use this feature to bypass logging.

3.5 Tokens
Each robot must periodically request nearby robots to audit

its log. Each request includes a message from the robot’s

𝑎-node with the current value of its local timer; the 𝑐-node

can obtain this message by calling makeTokenReqest on the

𝑎-node. If the audit is successful, the auditor returns a token
(𝑠, 𝑑, 𝑡, ℎ𝑐𝑘𝑝𝑡 ,𝑚𝑎𝑐) to the auditee, which includes the IDs of

the auditor and the auditee (𝑠 and 𝑑), the timestamp 𝑡 of the

auditee’s 𝑎-node, and the hash ℎ𝑐𝑘𝑝𝑡 of the checkpoint at the

end of the log segment that has been audited. The auditee

then installs the token in its 𝑎-node with installToken.

The 𝑎-node periodically checks the timestamps in the

installed tokens; if there are fewer than 𝑓max + 1 valid tokens
whose timestamps are ≤ 𝑇val old, the 𝑎-node triggers Safe

Mode (Section 3.1). This incentivizes each robot to request

audits regularly: if a compromised robot fails to do so, it is

shut down after time 𝑇val to enforce BTI. Since each robot

requires 𝑓max + 1 valid tokens, at least one must be from a

correct robot; thus, we only need to ensure that a correct

node never declares a misbehaving node’s log to be correct.

To ensure BTI, tokens must be time-specific, but the time

has to be that of the auditee (to avoid synchronized clocks);

this is why we include explicit audit requests issued by the

𝑎-node. Each token must be specific to both the auditor and

the auditee: otherwise, a compromised robot could sign its

own tokens or share tokens with other compromised robots.

3.6 Checkpointing
Naïvely, a robot’s log would grow steadily over time, and

auditing costs proportionally grow. To avoid this, Robo-

Rebound does incremental auditing: each audit covers only

a recent log segment. An auditor needs to know the 𝑐-node’s

state at the beginning of a segment it is auditing, so the 𝑐-

node checkpoints its current state periodically; an audit can

cover any segment between two consecutive checkpoints.

To ensure that the entire log is audited, RoboReboundmain-

tains the following invariant: the 𝑐-node’s log always starts

either a) at boot-up time, or b) at a checkpoint 𝑐𝑖 for which



𝑓max+1 tokens are available. The 𝑐-node records a new check-

point 𝑐𝑖+1 whenever it requests audits, and, once it collects
𝑓max + 1 tokens for 𝑐𝑖+1, it can discard log segments up to

𝑐𝑖 . Since audits need to be performed at least every 𝑇val , the

amount of storage the 𝑐-node needs for the log is constant.

3.7 Auditing
Each robot periodically asks other robots to audit its log, as

that is the only way it can acquire tokens to avoid being put

into Safe Mode. This is done in intervals of length 𝑇audit <

𝑇val , since audits can take a bit of time to complete. When

a robot requests an audit from another robot, it sends the

auditor a) the log segment to be audited; b) the checkpoint

𝑐1 at the beginning of the segment; c) the authenticators

immediately before 𝑐1 and at the end of the log segment; and

d) the tokens that cover 𝑐1. The auditor uses isTokenValid

to check whether the tokens are valid, and it verifies that

they all cover 𝑐1 and are from 𝑓max + 1 different robots. If any
check fails, the auditor ignores the audit request; there is no

need to take further action because no correct auditor will

agree to such a request, so the requestor’s existing tokenswill

expire and cause it to be shut down. If an auditee is concerned

about not hearing auditor responses, it can request additional

requests, because extra tokens cause no harm, to the extent

allowed by the leaky bucket rate limiter (see below).

Next, the auditor checks the log using deterministic re-

play [19]. It initializes a copy of the auditee’s state machine

with 𝑐1, replays the inputs from the log into the state ma-

chine, and verifies that its produced outputs match those in

the log. Since the state machine of a correct robot is deter-

ministic, the outputs should be identical; if they are not, then

the auditee has misbehaved and thus must be compromised.

In that case, the auditor ignores the audit request.

During replay, the auditor also tracks the auditee’s 𝑠-node

and 𝑎-node hash chains. It knows the start of the hash chain

from the authenticators before 𝑐1, and it can update the hash

chains whenever the 𝑠-node or 𝑎-node would have done

so. If the final hashes match those of the auditee-provided

authenticators, then the auditor can verify all the inputs and
outputs of the log by simply verifying the two authenticators.

The auditor invokes issueToken and returns the resulting

token to the auditee 𝑐-node only if all of the above checks

pass. Since a compromised auditor could return an invalid

token, the auditee uses isTokenValid to verify that the token

is valid. If valid, it forwards the token to its 𝑎-node; if invalid,

or if no token is received, the auditee requests an audit from

another nearby robot.

3.8 Refinements
As described, the 𝑠-node and 𝑎-node would have to update

their hash chain for every sensor input, actuator output, or

wireless message observed, which could be costly for small

MCUs. Batching can reduce this cost: the 𝑠- and 𝑎-node can

compute authenticators and hash-chain entries over groups

of inputs and outputs. This is safe because this information

is only used during audits; there is no immediate need to

check whether an authenticator exists for an input or output.

In Figure 2, batching is implemented in appendToChain.

We also need to limit the rate at which robots can request

audits; otherwise, compromised robots can run denial-of-

service attacks by requesting lots of audits and thus make

it difficult for correct robots to get fresh tokens. The func-

tion makeTokenReqest addresses this by including a leaky-

bucket rate limiter, which caps the request rate at 𝜌 , but still

lets the robots request audits in batches.

3.9 Limitations
RoboRebound cannot directly detect when a robot is com-

promised; it can only detect when a compromised robot

misbehaves, that is, its sequence of actuator commands and

transmitted messages differs from the one a correct robot

would have produced. This a fundamental limitation [41].

However, another way of saying this is that a compromised

robot can only avoid detection by behaving as a correct robot

would, so the adversary still gets only a limited time window

in which she can change the robot’s behavior, as per BTI.

Since deterministic replay is at the heart of the technique,

RoboRebound will not work for nondeterministic control

systems. However, deterministic systems are not uncom-

mon [14] and deterministic control algorithms are widely

deployed [49, 54, 55, 61, 68, 78, 80, 99]; RoboRebound can

provide meaningful security to these systems.

To some extent, our technique relies on having enough

correct robots nearby. Colluding adversarial robots could po-

tentially surround good robots one-by-one to prevent them

from acquiring enough tokens. However, typically, robots

are not spaced so far apart that simply being surrounded

by some robots would prevent communication with robots

that are further afield. For example, Vásárhelyi et al. [99]

reported near-perfect inter-robot wireless transmissions in

an outdoor setting at distances within 20m.

Tiny trusted MCUs like PICs would have trouble interpos-

ing on data flows from data-rich sensors like LIDAR. This

does not prevent the use of BTI, but the trusted nodes may

need to be more complex devices, which in turn may require

us to formally verify the trusted nodes.

Our solution involves adding special hardware for the 𝑠-

and 𝑎-node, which is much easier to do for newly designed

robots than for existing ones. On some robots it may be pos-

sible to use existing trusted-hardware features, such as TEEs,

but these are much more complex than our two simple de-

vices, so this would mean a larger attack surface [22, 67, 73]

and possibly additional implementation challenges, depend-

ing on how Safe Mode is implemented. For us, a key goal was

to identify a minimal hardware primitive that is sufficient

for BTI, and easy to trust.



3.10 Security argument
We observe that the adversary cannot learn the mission key

or the master key. We assumed the functions in the 𝑠-node

and 𝑎-node to be trustworthy, and none of them leak the key

– they return only MACs.We also assumed in Section 2.2 that

the adversary cannot extract the keys through other means;

e.g., differential power analysis or the JTAG interface (see

Section 3.2 for the assumed countermeasure). Although the

mission key is loaded at a time when the robot could already

be compromised, the key is blinded in loadMissionKey, and

the adversary cannot unblind it without knowing the master

key. Thus, since token requests, tokens, and authenticators

all contain MACs that cover all of the fields, as well as a

constant type identifier and the mission key, the adversary

cannot forge any of them.

Since authenticators cannot be forged, auditors know the

top of the auditee’s hash chains at the time of the audit.

And because 𝐻 is a cryptographic hash function, the auditor

can tell if the auditee has omitted, forged, or tampered with

any sensor input, actuator output, or incoming/outgoing

wireless message: all of these are recorded in the hash chain,

so the adversary cannot make changes without computing

a second preimage. The auditor can also tell if the provided

checkpoint is not authentic; this has to be either the starting

state at power-up or a checkpoint whose hash is contained

in 𝑓max + 1 tokens. But the latter must contain at least one

token issued by a correct node, and a correct node would

only issue such a token once replay succeeds.

If an auditor has a log segment and valid checkpoint for

the start of that segment, deterministic replay allows it to

determine if the auditee produced the right outputs given its

inputs. A correct auditor issues a token only after this check

succeeds, so compromised robots cannot get tokens from

correct robots once they “misbehave” by doing anything

deviating from their installed protocol.

Since the 𝑎-node only considers tokens valid for an in-

terval 𝑇val , any pre-misbehavior valid tokens would expire.

But a compromised, misbehaving robot can only get up to

𝑓max valid tokens (from other compromised robots it colludes

with), so it cannot avoid having its Safe Mode triggered at

most 𝑇val time after the first misbehavior. This is the BTI

property from Section 2.7 that RoboRebound is meant to

provide.

4 Implementation
We built two prototypes for our experiments: an end-to-end

simulation in ns-3 [76] to run experiments with many robots

under controlled conditions, and a hardware implementation

in our lab’s mobile-robot platform.

Simulation. Our ns-3 simulation implements the s-, c-, and

a-nodes, and the radio interface as ns-3 Applications that
run atop a ns-3 Node, which corresponds to a single robot.

Wireless propagation loss is modeled on the transmitter in

Figure 4. Three SecBot robots

the ESP32, used, e.g., by the e-puck 2 [20, 30], paired with a

2dBi antenna. The ESP32 and antenna combination results in

signal loss of 36.05 dBm at 1m. Thus, we set the ns-3 propa-

gation loss model to LogDistancePropagationLossModel
with reference distance of 1m, reference loss of 36.05, and ref-

erence exponent to three (the reference exponent used was

the default value). We set the standard to 802.11ax, the MCS

value to three, the channel width to 20MHz, and the guard

interval to 1600ns. We used the ConstantRateWifiManager
with the DataMode set to HeMcs3 and ControlMode set to

OfdmRate24Mbps. The MpduBufferSize setting was set to

sixty-four. The system was set to operate on the 6GHz band.

The WiFi MAC high model was set to the AdhocWifiMac.
All transmissions were done as either UDP broadcasts or

unicasts. We pre-populated the ARP cache and the IPv4 rout-

ing table for all robots. Robot acceleration magnitude was

capped at 5
𝑚
𝑠2

per dimension. We wrote 9, 579 lines of C++

code for the simulator.

Workload. We used our example “application” (flocking)

for our experiments – specifically, the Olfati-Saber protocol.

Our implementation follows [68], except for one a small

modification: the controller runs every 0.25s and the state is

wirelessly broadcast every 1.5s, whereas [68] set these two

values as equal. This not only saved bandwidth but also led

to better performance in our setting. There are many other

parameters; we list them in Appendix A.

Baseline. We compare the unprotected implementation to

one that is protected by RoboRebound. There is no existing

solution we could fairly compare to: BFT protocols from the

distributed-systems literature do not fit our threat model

(Section 2.5) and would in any case perform poorly because

of the intermittent network connectivity; solutions from the

MRS literature focus on consensus (Section 6) and thus apply

only to applications that use this primitive.

Hardware platform. We also added an 𝑠-node and an 𝑎-

node to SecBot, our lab’s mobile-robot platform. SecBot is a

wheeled robot that is powered by a 2200mAh, 50C lithium-

polymer battery. It has a variety of sensors; the one that is

relevant here is a PA1010D global navigation satellite system

(GNSS) module, which we use for navigation. The robots

communicate using a half-duplex, 915MHz radio module

(RFM69HCW), and they are controlled by a TinkerBoard S,



which has a Rockchip Quad-Core ARM Cortex-A17 MPCore

RK3288 CPU running at 1.8GHz, as well as 2GB of RAM.

This board serves as the 𝑐-node in our design.

For the 𝑠-node and 𝑎-node, we added two single-core,

MIPS32-based PIC32MX130F064B MCUs. At the time of writ-

ing, these cost about €3.16 each; they have 64KB of program

memory and 20KB of data memory, and they run at 50MHz.

We used SPI, I2C, and PWM to interface these MCUs to the

rest of the system – that is, to the 𝑐-node and the sensors

(𝑠-node) and to the 𝑐-node, the motors, and the radio module

(𝑎-node). For details, please see [26] and Appendix B.

Cryptography. RoboRebound uses two cryptographic

primitives: hashes and MACs. We used SHA-1 for hashing,

which is a bit cheaper than SHA-2 and seems fine for the

duration of a mission, which would be on the order of hours.

(The 2017 collision attack on SHA-1 [90] took 6,500 CPU

years and 100 GPU years.) If this is a concern, a different

hash algorithm could be used. Our design does not require
“heavyweight” primitives, such as signatures or public-key

encryption. ForMACs, we use LightMAC, which is optimized

for resource-constrained systems. We configure LightMAC

to use the recommended 80-bit keys and 64-bit tags [56].

5 Evaluation
Our experiments were designed to answer four questions: 1)

Can the trusted-node portion of the protocol work in real,

simple, embedded hardware?; 2) What are the costs of Robo-

Rebound?; 3) How effective is RoboRebound at providing

the bounded-time interaction property?; and 4) How does

our system scale as the number of robots in the flock grows?

We answer the first question with experiments on a SecBot

and the last three questions with simulations in ns-3.

5.1 𝑠-node and 𝑎-node
We begin with a look at our implementations of the 𝑠-node

and 𝑎-node algorithms on the PIC.

Complexity. One key question is whether the algorithms

are simple enough for the implementation to be trusted.

We believe that they are: as discussed in Section 4, the two

nodes need only 106 and 145 lines of C code, respectively.

This amount of code is small enough to be carefully audited

or perhaps even formally verified.

Hashes. Our next question is whether the PIC is fast enough

to handle the necessary hashes. This is a particularly im-

portant question because robotic security papers often do

not consider or consider as impractical cryptographic solu-

tions [31–33, 81–83]. We ran the MAC and hash functions on

the PIC with varying-length arguments; we report the mean

value of 100 trials for each length. Figure 5a shows the re-

sults. Although we use a standard hash function (SHA-1) on

an inexpensive PIC, it is still possible to hash a ten-message

batch of our biggest chain entry – Olfati-Saber’s 27-byte

state message – in around 144 𝜇s. If we assume that a robot
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Figure 5. (a) Speed of MACs and hashing on the PIC. (b)

CPU overhead for I/O, which grows linearly when data size

goes beyond 512 bytes.

sends 10 of these per second, receives status messages from

10 other robots within its range, and issues 4 actuator com-

mands per second, its 𝑎-node would have to hash 4 batches

per second, which would consume about 0.056% of its compu-

tation power. The 𝑠-node’s load is even lower because it only

handles sensor inputs; if we assume that there are 4 such

inputs per second, this would still only yield 0.4 batches and

thus consume 0.0056% of the 𝑠-node’s computation power.

Further improvements are possible with hashes optimized

for embedded processors, e.g., PHOTON-Beetle [8, 9].

MACs. The 𝑠- and 𝑎-node also need to compute and verify

MACs. We begin with a microbenchmark: we computed

MACs with arguments of different sizes, and we report the

mean time for 100 runs as another line in Figure 5a.

How often might an 𝑎-node have to compute a MAC?

MACs are used only during audits, so we have to consider

only two cases: auditing, and being audited. Assume 𝑇audit =

4𝑠 , the worst case for being audited is that for each sec-

ond, the 𝑎-node has to make one authenticator, 2𝑓max + 1
token requests, and then validate all 2𝑓max + 1 tokens that
are returned. (To be conservative, we ignore the obvious

possibility of reusing the same authenticator, and making

token requests in batches.) If we assume 𝑓max = 3, this would

involve 2 · (2𝑓max +1) +1 = 15MACs over a maximum length

of 39B, which would take about 5.36ms each, or 80.40ms

total per audit period (4s), which turns into 2.01% CPU load.

The load on the 𝑠-node would be lower, since it only makes

authenticators, not token requests.

A robot also has to audit at least an equal number of other

robots. During each audit, the 𝑎-node may need to issue a

token, and the 𝑠-node has to check the authenticator. (The

hashing needed to check the chains would happen on the

𝑐-node during the audit, which is presumably more powerful

and not the bottleneck.) If we conservatively assume that a

robot may agree to 6𝑓max audit requests per token validity

interval and all arrive at the samemoment, the corresponding

6𝑓max MACs on each of the two PICs, with 𝑓max = 3, would

consume 96.48ms per audit period (or 2.412% CPU).

I/O Overhead. Besides computation, I/O will also add extra

overhead to the CPU. The CPU needs to copy the data from

or to the corresponding registers when it is available. We

measured the I/O overhead by running the same program



Primitive (computation) ms/op ops/s Load

makeAuthenticator 12.0 0.25 0.30%

isTokenValid 11.0 2.00 2.20%

makeTokenRequest 11.0 2.00 2.20%

sendWireless (state and token, <40B) 1.1 3.17 0.35%

sendWireless (audit, <2kB) 20.1 0.25 0.50%

recvWireless (state and token, <40B) 1.1 9.17 1.01%

recvWireless (audit, <2kB) 20.1 2.50 5.03%

actuatorCmd 1.1 4.00 0.44%

issueToken 21.0 2.50 5.25%

Total 17.28%

Table 1. Worst-case load on the 𝑎-node.

Primitive (computation) ms/op ops/s Load

pollSensors 1.1 4.00 0.44%

makeAuthenticator 12.0 0.25 0.30%

checkAuthenticator 21.0 2.50 5.25%

Total 5.99%

Table 2. Worst-case load on the 𝑠-node.
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Figure 6. Bandwidth and storage required of a single robot

with RoboRebound.

with and without I/O, starting from a state where the I/O

buffer is empty, and calculated the time difference. Figure 5b

shows the results. A small message of 32B takes the CPU

0.29ms to receive and 0.41ms to send. A medium message of

512B takes 3.47ms to receive and 3.03ms send. A large mes-

sage of 2kB takes 16.46ms to receive and 11.34ms to send. For

most trusted functions, only small messages are exchanged;

the sendWireless and the recvWireless may involve large

messages. Large messages are only transmitted when audit-

ing happens. The message sizes are all less than 2kB, and

they are transmitted at a rate no larger than 3 messages per

second. Therefore, the worst-case processing time for them

is smaller than 50ms, or 5% of the CPU utilization.

Worst-case overall load. We next show the worst-case

overall load of trusted nodeswith the previous configurations

of auditing period𝑇𝑎𝑢𝑑𝑖𝑡 = 4𝑠 , state exchange period𝑇𝑠𝑡𝑎𝑡𝑒 =

1.5𝑠 , and control period 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.25𝑠 (this matches the

ns-3 setup we use next). We set 𝑓𝑚𝑎𝑥 = 3 and each robot to

be connected to 10 peers. Tables 1 and 2 show each of the

primitives, the cost of a single invocation, and a worst-case

number of invocations for both trusted nodes. Based on our

results, we set 1ms to be the worst-case execution time for

a SHA-1 operation for 270B, and 10ms to be the worst-case

execution time for a MAC operation over 40B. The worst-

case values are conservative and unlikely to occur; 99.9%

of the results are within ±1% of the mean values. For I/O,

we assume that in the worst case, a small message takes

1ms to process, and large messages take 20ms. The CPU

loads are thus 17.28% on the 𝑎-node and 5.99% on the 𝑠-

node, well within the PIC’s capabilities. Results with other

configurations show that the utilization is approximately

linear to 𝑇𝑎𝑢𝑑𝑖𝑡 and the number of other robots that one has

connection with, while it is not sensitive to 𝑓𝑚𝑎𝑥 or 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 .

5.2 𝑐-node
Next, we evaluate the c-node costs in ns-3, which allows us

to simulate multiple robots. We use two setups: 𝑖) a 25-robot

flock with desired inter-robot space 4m, and 𝑖𝑖) 16–324 robots

(square arrangements with 4–18 robots per edge) arranged

with desired inter-robot distance 4m–64m. Unless otherwise

stated, experiments ran for 50s, created new audit requests

every 4s, and set the target location to (500𝑚, 500𝑚). Sensors
are polled and a new control vector is generated every 0.25s,

and wireless state broadcasts occur every 1.5s. Auditees wait

50ms after sending 𝑓max + 1 audit requests before requesting
additional audits (e.g., in case one of their selected auditors

is no longer a neighbor). Across our experiments, no robots

crashed, and no correct robots were put into Safe Mode. We

collected data from each robot and present the results.

Bandwidth. Figure 6 shows our results for bandwidth given
setup (𝑖) from above. The robots use a small, fixed amount

of bandwidth for Olfati-Saber’s state broadcasts and, for

𝑓max > 0, a larger amount of bandwidth for RoboRebound’s

audits, which increases with 𝑓max. This is because each node

needs to stream its log to 𝑓max+1 auditors. The logs grow at a

rate of about 0.8kBps (see below), but there is also some over-

head for the audit responses (e.g., tokens). In relative terms,

RoboRebound uses more bandwidth than Olfati-Saber, but

its cost is still small in absolute terms, and well within the

capacity of the wireless channel we used. The cost does not
vary significantly with the auditing interval. This is because

auditing effectively transfers each log entry to 𝑓max + 1 audi-
tors. Short and long auditing intervals cause this transfer to

happen in smaller or larger increments, respectively, but the

overall cost is still roughly the same.

Mean transmitted goodput per node decreases as the audit

period increases. This is due to less overhead for each token

that is requested, and due to the fact that audit requests can

be spaced apart in time better, resulting in less contention

over the wireless channel.

Storage size. On the 𝑠- and 𝑎-node, the costs can easily

be seen in Algorithms 2–4: since we concentrated the more

expensive functionality on the c-node, both nodes only need

a few bytes. Recall from Section 3.4 that a 𝑐-node stores a)

a few recent checkpoints, and b) the log entries since that

checkpoint. Since logs are periodically truncated when a

new round of tokens has been collected, the storage cost

is essentially that of the most recent few checkpoints and

of the log segment. Consider again Figure 6, which uses
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Figure 7. Scalability for variable density (a+b) and for variable number of robots at constant density (c+d).

setup (𝑖) from above. Storage requirements do not grow with

𝑓max; the contents of checkpoints and logs are independent

of the number of auditors. Log size grows linearly with the

auditing interval; with the chosen Olfati-Saber parameters,

it is about 0.8 kB/s. This seems seems more than reasonable;

e.g., SecBot’s 𝑐-node, the TinkerBoard S, has 2GB of RAM.

What exactly goes into these 0.8kB/s? The log contains

each message that the robot has sent or received over the

wireless network (excluding the audit-related messages), as

well as the sensor inputs and actuator outputs. Sensor log

entries take 34B and actuator log entries take 26B. Local

sensing happens every 250ms, consuming 136B/s; likewise,

actuator commands then consume 104B/s. Nodes broadcast

state every 1.5s, consuming 566.67B/s (twenty-four received

states and one sent). This means the log could grow at up to

806.67B/s. Note that this cost changes as the frequency of its

three components changes.

A 𝑐-node also stores, at most, the latest three checkpoints.

Each checkpoint contains the time at which it was generated

(8B), the position and velocity of the robot (8B each), the

current top hashes as tracked by the 𝑐-node for both the a-

and the 𝑠-node (20B each), the number of neighbors (2B), and

a set of neighbor information entries, which each contain

the neighbor’s ID (2B), the time when the last message from

that neighbor was received (8B), and the neighbor’s position

and velocity vectors (8B each). One checkpoint could thus

consume up to 690B (if all 24 robots are neighbors). A robot

might store up to three checkpoints before old checkpoints

get pruned down to the most recent two.

Scalability. Next, we examine how these costs change with

MRS scale. There are two ways to scale an MRS: i) increase

the density of the system, by packing a fixed number of

robots into less space, or ii) keep the density constant and

increase the number of robots. We examine both.

Figures 7(a) and (b) show how the bandwidth and storage

costs change with the inter-robot distance while the num-

ber of robots is constant; each figure shows lines for 16, 36,

64, and 100 robots. At smaller distances (higher densities),

the costs for the larger systems are higher than those for

the smaller ones because the wireless transmission range is

fixed, so higher densities cause each robot to “hear” more

transmissions from peers, which it then has to store in its

log and transmit to auditors later on. But at larger distances

(lower densities), this effect disappears because the entire

MRS no longer fits into a single transmission range, so the

number of neighbors per robot levels off. In absolute terms,

the bandwidth is quite low, even at the higher densities.

Figures 7(c) and (d) use the same metrics but keep inter-

robot distance constant at 64m and vary MRS size. After

an initial increase, the transmission ranges fill up and the

per-robot costs remain roughly constant. This is expected

because all the interactions are local between a robot and

its direct neighbors. There is still a small increase due to

boundary effects: robots at the edge of the flock will have

fewer neighbors and thus a lower cost, but the edge grows

linearly with the diameter of the flock, while the overall

area grows quadratically. The fraction of robots at the edge

decreases, thereby increasing the average.

5.3 Example attack
Our final experiment shows how RoboRebound acts dur-

ing an example attack. It is not meant to prove that Robo-

Rebound is secure: for that, we would have to try out all

combinations of systems and attacks, which is impossible.

However, we have already presented our security argument

in Section 3.10, so this is mostly meant as an illustration.

Attack method. A compromised robot spoofs robots to

cause correct robots to stay away from the destination. This

works because, in [68], the robots broadcast their position

and speed, and each robot uses these broadcasts to compute

its own direction and speed. In the absence of RoboRebound,

the state broadcasts are not verifiable, so a compromised ro-

bot can easily lie. Note that correct robots 𝑖 and 𝑗 continue

to broadcast their own states during this time, so periodi-

cally 𝑖 gets the correct state of 𝑗 . However, since 𝑖 cannot

differentiate real and spoofed messages, the adversary just

broadcasts spoofed packets faster than correct 𝑐-nodes.

Let x be a robot’s position and d be the destination. For

each correct robot 𝑖 , the compromised robot selects, and

claims, on behalf of another robot 𝑗 that 𝑗 is at x𝑗,𝑠𝑝𝑜𝑜 𝑓 =(
x𝑖 − x𝑖−d

| |x𝑖−d | |2

)
𝑚 if | |x𝑖 − d| |2 ≤ 𝑧, where 𝑧 is the maxi-

mum distance the adversary wants to keep between correct

robots and the destination. If | |x𝑖 − d| |2 > 𝑧, then x𝑗,𝑠𝑝𝑜𝑜 𝑓 =(
d + (𝑧 − 𝜀) x𝑖−d

| |x𝑖−d | |2

)
𝑚. Here, 𝑧 = 150m and 𝜀 = 2m.
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Figure 8. Starting position (a), execution with correct robots (b+c), and execution with one compromised robot and Robo-

Rebound disabled (d+e). We show each robot’s distance to the goal (b,d) and the final position (c,e).

 0

 25

 50

 75

 100

 125

 150

 0  50  100  150

(a) Motion w/ fault+RoboRebound

D
is

t.
 t
o
 D

e
st

in
a
tio

n
 (

m
)

Time (sec)

Good Robot
Bad Robot

 0

 25

 50

 75

 100

 0  25  50  75  100

(b) End position w/ fault+RoboRebound

Y
 P

o
si

tio
n
 (

m
)

X Position (m)

Destination
Good Robot
Bad Robot

t = 150 sec

Figure 9. Execution with one compromised robot and Robo-

Rebound enabled. The compromised node is only able to act

in the shaded time span.

The adversary could also make claims about the veloc-

ity of 𝑗 ; e.g., the adversary claims that 𝑗 is moving directly

away from the destination, which spurs 𝑖 to move away

from the destination to avoid a crash. For our attack, it was

sufficient for the spoofed messages to claim that the veloc-

ity was 𝑐 = 1 times the unit direction vector: x𝑗,𝑠𝑝𝑜𝑜 𝑓 =(
𝑐 1

𝑠𝑒𝑐

) ( x𝑖−d
| |x𝑖−d | |2𝑚

)
. Since this is not a particularly sophisti-

cated attack, the results should be interpreted as a lower

bound on what a smart, determined adversary could achieve.

Setup and results. We placed 25 robots (blue dots) in a

100m×100m arena, as shown in Figure 8a. Robots use Olfati-

Saber’s flocking protocol to reach the destination (green ‘x’)

while avoiding crashing. In Figure 8b, we show each robot’s

distance to the target (thin blue line). The robots smoothly

move towards the destination, reaching it near the end of the

150s. Figure 8c shows the final state at 𝑡 = 150s: the robots

are still together and clustered near the destination.

Figures 8d and 8e show what happens without Robo-

Rebound; a robot is compromised at 𝑡 = 15s. The compro-

mised robot keeps sending spoofed messages. Correct robots

believe their path is blocked and remain away from the target

to avoid crashing into the spoofed robots they believe to be

real. The shaded region represents when the attack is active.

When RoboRebound is enabled, the scenario unfolds as in

Figures 9a and 9b. The compromised robot briefly disturbs

the formation of the correct robots, but its audits start fail-

ing immediately, its tokens expire, and it is disabled quickly,

as shown by the much smaller shaded region. The correct

robots continue on their path, reaching roughly the same

final state as in the baseline scenario without an adversary.

6 Related Work
As we argued in Section 2.5, solutions from the distributed

systems literature are difficult to apply to MRS. Existing

robot security work tends to be specific to a particular types

of algorithms or attacks. We are not aware of an existing,

general solution for the fully-Byzantine threat model.

Resilient consensus. There is a substantial literature on
solving consensus in MRS under an adversarial model [38–

40, 69, 70, 81, 82, 91, 92, 113, 114]. However, the threat model

typically focuses on robots that attempt to sway the consen-

sus outcome. Saulnier et al. [83] presents a resilient flocking

algorithm that that can withstand a few compromised robots;

however, compromised robots are assumed to move accord-

ing to the consensus, and consensus requires 4𝑓max +1 nodes,
due to network topology constraints [38]. Franceschelli et

al. [23] detects compromised robots by executing “motion

probes”, in which some correct nodes briefly deviate from

the normal control algorithm, to see whether the other nodes

will respond as expected. Unlike RoboRebound, all of these

solutions are problem-specific and not designed to work for

a more general class of algorithms.

Sybil attacks. Another line of work defends MRS against

Sybil attacks [31, 33, 57, 110] by deploying a fingerprinting

approach based on synthetic aperture radar. To create finger-

prints, robots must spin in a circle to collect wireless signals

and then construct fingerprints based on how signals have

reflected and refracted. This approach is largely orthogonal

to ours, and the solutions are specific to Sybil attacks.

Byzantine-tolerant routing. Some work focuses on multi-

hop routing tolerant of Byzantine faults. E.g., [101] uses hier-

archical clustering for Byzantine-resilient routing in ad-hoc

networks. Other work [5–7] uses adaptive probing to find

faulty links caused by Byzantine nodes, and routes packets

to avoid these links. BSMR [18] uses a reliability metric com-

puted by comparing advertised and observed data rates of

nodes in an ad-hoc wireless network to avoid routing packets

through adversarial links. However, it is not clear whether

they could be generalized beyond their specific applications.

Byzantine Fault Tolerance. There is an extensive work on

Byzantine Fault Tolerance (BFT) [13, 46, 51, 89, 111], but most

of it focuses on traditional distributed systems and not CPS,



let alone MRS. Solutions often make assumptions that do not

apply to MRS: e.g., most assume the asynchronous model

(with a few notable exceptions [4, 17]), and almost all assume

a fully-connected network. BFT++ [62] is a rare example of

a BFT protocol that is designed specifically for CPS, but it

is constrained by the need to work with legacy systems.

Turqois [64, 65] is designed for wireless ad-hoc networks,

but it cannot detect when a compromised robot lies about

its sensor inputs or issues different actuator commands.

Auditing. Some research tries to detect compromised nodes,

rather than merely masking their presence. PeerReview [42]

uses tamper-evident logs and auditing to detect observable

Byzantine faults [41]. However, as most BFT protocols, most

auditing techniques assume asynchrony and a fully con-

nected network, making them a poor fit for MRS. Bounded-

Time Recovery [27, 28] can recover a system once a faulty

node is found, but assumes a static and reliable network.

Trusted hardware. RoboRebound’s approach of using a

few simple trusted components to boost a protocol’s power

has been used before. E.g., TrInc [50], uses a simple attestation-

enabled counter to prevent equivocation in BFT protocols.

However, TrInc is specific to BFT and would not help with

MRS, partly because it cannot be used to secure inputs or

outputs. Individual devices have used trusted components

to certify the accuracy of sensor inputs – the classical exam-

ple is trustworthy cameras [25], which can certify that their

pictures are genuine – but we are not aware of any solution

that uses this to detect compromised nodes.

As discussed in Section 3.9, it should be possible to imple-

ment RoboRebound using trusted hardware primitives that

are already available in a CPU – e.g., with TEEs such as ARM

TrustZone or Intel’s SGX [10, 108]. However, TEEs tend to

have a much richer functionality than our 𝑠- and 𝑎-node, so

their attack surface tends to be larger [22, 67, 73].

Simplex. Simplex [63, 84] uses a a complex controller and a

simple safety controller that can take over when the former is

compromised. This approach has been applied to multi-agent

systems [60], but it requires a trustworthy implementation

of the system’s specific algorithm for the safety controller.

In contrast, RoboRebound only requires trust in the 𝑠- and

𝑎-node, which are protocol-agnostic and much simpler.

7 Conclusion
RoboRebound shows that a little bit of trusted hardware

can go a very long way. Although the 𝑠- and 𝑎-node in Robo-

Rebound implement minimal functionality, they massively

enhance RoboRebound’s ability to detect a misbehaving

compromised robot – even in cases where the robot lies about

its sensor inputs or actuator commands – and they force each

robot to periodically undergo auditing. This enables Robo-

Rebound to be a general technique applicable to a wide

range of MRS applications under the fully-Byzantine threat

model. To our knowledge, this is a first: we are not aware of

any other MRS defense that can do this.

AndMRS do urgently need a general defense: common pro-

tocols tend to relay critical information from robot to robot,

with little or no checking, so protocols may require robots

to simply believe what other robots say. This could cause

myriad vulnerabilities, of which this paper barely scratches

the surface; this could be fertile ground for a more compre-

hensive study. In addition, we hope that this paper will raise

awareness of the general problem, and ideally lead to the

development of alternative approaches that are more secure.
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A Olfati-Saber Parameters
Table 3 lists the values of parameters we used for our ns-3-
based implementation of the Olfati-Saber flocking protocol.

Broadly, these cover parameters related to the network com-

munications and control algorithm that runs on each robot

in a group of robots that are performing Olfati-Saber flock-

ing. We provide basic descriptions, but for a more in-depth

treatment, please see the original paper [68].

B SecBot Hardware Design
A SecBot consists of three key pieces: the software running

on the two trusted nodes and one untrusted node, the elec-

tronics that connect these nodes to one another, the sensors,

the actuators, and the radio, and the mechanical chassis that

Table 3. Parameters used for Olfati-Saber flocking.

Name Value Note

𝑑 Varies Desired inter-robot spacing [68, Eq. 5].

𝑟 1.2𝑑 This is thewireless range in the original paper [68, Eq. 3],

but is not really used since we use the more realistic

signal loss models of ns-3. 𝜅 = 1.2 is from [68, Sec-

tion VIII].

𝜅 𝑑/𝑟 Distance-to-wireless-range ratio [68, Def. 1]

𝜖 0.1 Parameter for the 𝜎-norm [68, Eq. 8].

𝑎 5.0 Parameter for ‘action function’ [68, Eq. 15].

𝑏 5.0 Parameter for ‘action function’ [68, Eq. 15].

𝑐 𝑎−𝑏√
4𝑎𝑏

Parameter for ‘action function’ [68, Eq. 15].

ℎ𝜙𝑎 0.2 Boundary of one of the piecewise ‘bump functions’ [68,

Eq. 10].

ℎ𝜙𝑏 0.9 Boundary of one of the piecewise ‘bump functions’ [68,

Eq. 10].

𝑑 ′ 0.5𝜅𝑑 Used to describe robot-to-obstacle algebraic con-

straints [68, Eq. 50].

𝑟 ′ 𝜅𝑑 ′ Defines the interaction range w.r.t. obstacles [68, Eq. 47].
𝐶𝛼
1

0.005 Akin to a ‘spring’ constant for control gain w.r.t. other

robots [68, Eq. 59].

𝐶𝛼
2

0.05 Akin to a ‘damper’ constant for control gain w.r.t. other

robots [68, Eq. 59].

𝐶
𝛽

1
0.0 Akin to a ‘spring’ constant for control gain w.r.t. obsta-

cles [68, Eq. 59]. This is set to zero because our evalua-

tion does not use obstacles.

𝐶
𝛽

2
0.0 Akin to a ‘spring’ constant for control gain w.r.t. obsta-

cles [68, Eq. 59]. This is set to zero because our evalua-

tion does not use obstacles.

𝐶
𝛾

1
−0.001 Akin to a ‘spring’ constant for control gain w.r.t. desti-

nation [68, Eq. 59].

𝐶
𝛾

2
−0.060 Akin to a ‘damper’ constant for control gain w.r.t. desti-

nation [68, Eq. 59].

holds everything together. This appendix will primarily fo-

cus on the design of the electronics such that SecBot can be

a usable robot. There are six modules that the circuit board

is broken into: the (1) sensor module, (2) sensor node mod-

ule, (3) compute node module, (4) actuator node module, (5)

actuator module, and (6) radio module.

Each robot provides slots for a sensor suite: one Global

Navigation Satellite System (GNSS), one Inertial Measure-

ment Unit (IMU), and two encoders. Data from sensors gets

channeled to the 𝑠-node, which is a PIC32MX130F064B MCU

with 20KB data memory and 64KB of program memory. The

𝑠-node, once it does BTI-level processsing of sensor data

(such as appending sensor data to its hash chain), it forwards

the data to the 𝑐-node module. The 𝑐-node module runs a

control algorithm and determines what control signals to

send to the 𝑎-node module. The 𝑎-node module uses Pulse

Width Modulation (PWM) to control the speed of two DC

brush motors bolted to the chassis. The 𝑎-node also inter-

faces to a 915 MHz half-duplex radio transceiver. To prevent

issues with having to trust third-party drivers, all software

for trusted nodes MCU was custom-written. The only ex-

ternal file used was xc.h, which provides mappings from

register addresses to human-readable register names.



The 𝑐-node on a SecBot is a TinkerBoard S, which has

a Quad-Core 32-bit ARM Cortex A-17 MPCORE RK3288

CPU running at 1.8GHz, and 2GB of DDR3 RAM. The 𝑠-

node and 𝑎-node both are implemented in MIPS32-based

PIC32MX130F064B MCUs running at 50MHz, with each hav-

ing 64KB of program memory and 20KB of data memory.

Sensors, actuators, and radio module. SecBot contains
an Adafruit Mini GPS PA1010D module and an Adafruit TDK

InvenSense ICM-20948 9-DoF IMU that are both controlled

over a shared Inter-Integrated Circuit (I2C) bus. There are

also two pins reserved to be used by encoders that are at-

tached to the axles of each of the two wheels; encoders are

used to get accurate estimations of the amount a wheel has

rotated. For actuation, SecBot includes a L298N motor dri-

ver that controls two DC brush motors. A SecBot robot can

communicate with other robots over a RFM69HCW 915MHz

radio. This radio is connected over an SPI bus to the 𝑎-node.

This ensures that the 𝑐-node never directly communicates

with outside agents.

Sensor node. The 𝑠-node controls the I2C bus that talks

to the GNSS and IMU modules at a bus rate of 100kHz. The

𝑠-node also uses four pins for SPI communication with the

𝑐-node. This setup allows for the 𝑠-node to interpose on the

communications line between the sensors and the untrusted

𝑐-node. The speed of this bus is configurable using a setting

in the 𝑐-node, and has been tested at 500kHz-1.5MHz.

Control node. The control node, or 𝑐-node, is complex

and therefore untrustable. SecBot uses a TinkerBoard S as

its 𝑐-node. The 𝑐-node uses its onboard SPI0 SPI module

to talk to the 𝑠-node and SPI2 to talk to the 𝑎-node. The

communications rely on using the spidev kernel module.

Access to the radio comes through the 𝑎-node, and the radio

module has a FIFO buffer limited to 66B. As a result, large

packets are fragmented and re-assembled by the receiver.

Actuator node. SecBot uses the same PIC32MX130F064B

MCU for its 𝑎-node as it does for its 𝑠-node. Since the 𝑎-

node has a few more responsibilities than the 𝑠-node, it has

a slightly more complex setup. The 𝑎-node also uses an SPI

bus to talk to the 𝑐-node, but it has a second SPI module for

communicating with the RFM69HCW 915MHz ISM-band

radio module; this is necessary since a trusted node needs

to interpose on all external communications that the 𝑐-node

has. The 𝑎-node handles this additional responsibility by

using an addressable latch. This chip allows the 𝑎-node to

control eight outputs with only five pins (as opposed to eight

pins otherwise).

For the RoboRebound protocol, the 𝑎-node needs to have

a (local) sense of time. It uses Timer 4 and Timer 5 together

as a 32-bit system clock that is initialized to 0 at startup. Each

tick of this clock represents 5.12ms.

The 𝑎-node uses two Output-Compare modules (OC2 and

OC4) to produce Pulse Width Modulation signals to control

the speed of twoDC brushmotors via the L298Nmotor driver.

Two of the addressable latch outputs are used to control the

direction that each motor spins.

The 𝑎-node software includes a radio driver that was writ-

ten specifically for SecBot, but based on the drivers available

from RadioHead [58] and LowPowerLabs [79]. The radio dri-

ver implements a simple version of Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA). It does not im-

plement CSMA/CA acks; instead, it simply checks whether

the channel is busy before attempting to send.
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