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Differential Privacy is Useful
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Fuzzi and its Three Levels

Type System for differentially

i ) ] Type System ----
private, imperative programs

Advanced Probabilistic Couplings
for Differential Privacy |ASSEE—To12{x] . - - - - -
Barthe et al. 2016.
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An Example Fuzzi Program

100.0, 205.0,1000.0, 2500.0,

99999.0,10000.0, ...

partition

100.0, 205.0, ...

1000.0, 2500.0, ...

99999.0,10000.0, ...

100000.0

l sum

50000000.0

900000000.0
(899990000.0)

l laplace noise

125759.1

50075392.6

90025315.9 (900042943.8)




// income :1 {float}

Ar ExamipleFazzi Prograni - ¢

ps = partition(income, ...);

°
el aVaVWVaV::Val (ol NVl |

100.0, 205.0,1000.0, 2500.0,
99999.0,10000.0, ...

/] |ingaitien grpups :- ﬂf?Toat}] lhdmfnmm
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900000000.0 J
99999.0,10000.0, ...

(899990000.0) 90025315.9 (900042943.8)
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// epsilon=1F0, delt%=0.0
income_sum = laplace(income_sum, 1000.0); 5




Fuzzi Type System




Type System as an Interface to apRHLApproximate
Relational
Hoare Logic Relational Hoare Logic
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Type System as an Interface to apRHL

apRHL
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Packaging Manual Proofs for Mechanisms

apRHL

bmap
OAQOVH
partition
. l € 0
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Evaluation

Differentially Private

Dataset

Logistic Regression

0.84 (11.02,10e-6)

MNIST

Ensemble of Logistic

0.82 (20.0,0.0)

MNIST (partitioned)

Regression
Naive Bayes 0.69 (7.70, 0.0) Spambase
K-Means 0.55-0.9, median 0.69 | Iris

(21.0, 0.0)




Linear Dependent Types for Differential I
Privacy.
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Conclusion

1. We propose a high-level sensitivity type system for tracking differential privacy
a. Weestablish soundness through straightforward embedding into apRHL;
b. Thetype system is expressive enough for verification conditions of manual differential privacy proofs in
apRHL.
2. Weshow how to push manual proof results of DP back into sensitivity type system

a. Wedevelop manual proofs of bag-map, bag-sum, partition, advanced composition.

3.  We evaluate Fuzzi by implementing 4 textbook machine learning algorithms

a. We build a prototype of Fuzzi in Haskell
b. We translate Fuzzi program into Python3 for execution
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A Privacy Type System for Simple While Programs
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A Privacy Type System for Simple While Programs

Plus

I'ej:gint  I'ke,:;;int
I'-e;+e,:5.:int

Laplace

Tte:float
{I'}z = laplace(e,w){T'[z—0].(s/w,0)}
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Properties of Differential Privacy

1. Compositional

v/ Givenfi(e1,01)-DP andf2 (ez,d2)-DP

v'  Running f1followed by f2is (e; + €3,81 + ) -DP
2. Robust to post-processing

v/ Furtheranalysis on the results of f does not weaken its DP
guarantees
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Differential Privacy is Subtle

Understanding the Sparse Vector Technique for
Differential Privacy

Min et al. 2016.

On the Privacy Properties of Variants on the Sparse
Vector Technique

Chen and Machanavajjhala. 201s.

THIS DOES NOT LOOK
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